, Volume 815, Issue 1, pp 47–63 | Cite as

Regulation of plankton and nutrient dynamics by profundal quagga mussels in Lake Michigan: a one-dimensional model

  • Chunqi Shen
  • Qian Liao
  • Harvey A. Bootsma
  • Cary D. Troy
  • David Cannon
Primary Research Paper


Invasive dreissenid mussels have altered plankton abundance and nutrient cycling in the Great Lakes. In this study, a 1-D hydrodynamic-biogeochemical coupled model is developed to investigate their effects at a mid-depth offshore site in Lake Michigan. Model simulation shows that water surface temperature and vertical thermal structure can be well reproduced. Driven by the simulated vertical mixing, the biological model solves the transport and transformation of nutrients, plankton and detritus in the water column. Mussel grazing and excretion are added at the bottom boundary. The biological model predicts a notable decline of phytoplankton biomass and considerable increase of dissolved phosphorus (DP) in the entire water column at the end of spring. However, the reduction of phytoplankton and the increase of DP are limited to the bottom 20 m in summer as a result of the strong stratification. Model results also show that mussels can maximize particle delivery to the benthos, as the modeled benthic diffusive flux of particulate phosphorus exceeds the passive settling rate by 4.2× on average. Model simulation over a 10-month period indicates that profundal mussels have the potential to significantly change the distribution of energy and nutrients in the water column, even in a deep and stratified environment.


Numerical modeling Lake Michigan Dreissenid mussels Phytoplankton Nutrient Phosphorus 



This study was funded by the Wisconsin SEA Grant under project number R/HCE-02-10, and by the National Science Foundation under project number NSF-OCE 1658390.

Supplementary material

10750_2018_3547_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1395 kb)


  1. Ackerman, J. D., M. R. Loewen & P. F. Hamblin, 2001. Benthic–Pelagic coupling over a zebra mussel reef in western Lake Erie. Limnology and Oceanography 46: 892–904.CrossRefGoogle Scholar
  2. Austin, J. A. & S. M. Colman, 2007. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophysical Research Letters 34: L06604.CrossRefGoogle Scholar
  3. Babanin, A., M. Onorato & F. Qiao, 2012. Surface waves and wave-coupled effects in lower atmosphere and upper ocean. Journal of Geophysical Research: Ocean 117: C00J01.Google Scholar
  4. Bai, X., J. Wang, D. Schwab & Y. Yang, 2013. Modelling 1993-2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM. Ocean Modelling 65: 40–63.CrossRefGoogle Scholar
  5. Beletsky, D. & D. Schwab, 2001. Modeling circulation and thermal structure in Lake Michigan: annual cycle and interannual variability. Journal of Geophysical Research: Ocean 106(C9): 19745–19771.CrossRefGoogle Scholar
  6. Beletsky, D., D. J. Schwab & M. McCormick, 2006. Modeling the 1998–2003 summer circulation and thermal structure in Lake Michigan. Journal of Geophysical Research: Ocean 111: C10010.CrossRefGoogle Scholar
  7. Bennington, V., G. A. McKinley, N. Urban & C. McDonald, 2012. Can spatial heterogeneity explain the perceived imbalance in Lake Superior’s carbon budget? A model study. Journal of Geophysical Research: Biogeosciences 117: G03020.CrossRefGoogle Scholar
  8. Berg, D. J., S. W. Fisher & P. F. Landrum, 1996. Clearance and processing of algal particles by zebra mussels (Dreissena polymorpha). Journal of Great Lakes Research 22: 779–788.CrossRefGoogle Scholar
  9. Bocaniov, S. A., R. E. H. Smith, C. M. Spillman, M. R. Hipsey & L. Leon, 2014. The nearshore shunt and the decline of the phytoplankton spring bloom in the Laurentian Great Lakes: insights from a three-dimensional lake model. Hydrobiologia 731: 151–172.CrossRefGoogle Scholar
  10. Boegman, L., M. R. Loewen, D. A. Culver, P. F. Hamblin & M. N. Charlton, 2008. Spatial-dynamic modelling of algal biomass in Lake Erie: relative impacts of dreissenid mussels and nutrient loads. Journal of Environmental Engineering 134(6): 456–468.CrossRefGoogle Scholar
  11. Bootsma, H. A. & Q. Liao, 2013. Nutrient cycling by dreissenid mussels. In: Quagga and Zebra Mussels. CRC Press, Boca Raton: 555–574.Google Scholar
  12. Bootsma, H. A., J. T. Waples & Q. Liao, 2012. Identifying Major Phosphorus Pathways in the Lake Michigan Nearshore Zone. MMSD Contract.Google Scholar
  13. Brooks, A. S. & D. N. Edgington, 1994. Biogoechemical control of phosphorus cycling and primary production in Lake Michigan. Limnology and Oceanography 39: 961–968.CrossRefGoogle Scholar
  14. Bunnell, D. B., C. P. Madenjian, J. D. Holuszko, J. V. Adams & J. R. P. French, 2009. Expansion of Dreissena into offshore waters of Lake Michigan and potential impact on fish populations. Journal of Great Lakes Research 35: 74–80.CrossRefGoogle Scholar
  15. Chen, C., R. Ji, D. J. Schwab, D. Beletsky, G. L. Fahnenstiel, M. Jiang, T. H. Johengen, H. A. Vanderploeg, B. Eadie, J. W. Budd, M. H. Bundy, W. Gardner, J. Cotner & P. J. Lavrentyev, 2002. A model study of the coupled biological and physical dynamics in Lake Michigan. Ecological Modelling 152: 145–168.CrossRefGoogle Scholar
  16. Choi, J., C. D. Troy, T. Hsieh, N. Hawley & M. J. McCormick, 2012. A year of internal Poincaré waves in southern Lake Michigan. Journal of Geophysical Research: Ocean 117(C7): 16.CrossRefGoogle Scholar
  17. Dayton, A. I., M. T. Auer & J. F. Atkinson, 2014. Cladophora, mass transport, and the nearshore phosphorus shunt. Journal of Great Lakes Research 40: 790–799.CrossRefGoogle Scholar
  18. Dobiesz, N. E. & N. P. Lester, 2009. Changes in mid-summer water temperature and clarity across the Great Lakes between 1968 and 2002. Journal of Great Lakes Research 35: 371–384.CrossRefGoogle Scholar
  19. Dolan, D. M. & S. C. Chapra, 2012. Great Lakes total phosphorus revisited: 1. Loading analysis and update (1994–2008). Journal of Great Lakes Research S3: 104–114.Google Scholar
  20. Driscoll, Z. & H. A. Boostma, 2015. Zooplankton trophic structure in Lake Michigan as revealed by stable carbon and nitrogen isotopes. Journal of Great Lakes Research 36: 20–29.Google Scholar
  21. Fahnenstiel, G., S. Pothoven, H. Vanderploeg, D. Klarer, T. Nalepa & D. Scavia, 2010. Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan. Journal of Great Lakes Research 36: 20–29.CrossRefGoogle Scholar
  22. Hecky, R. E., R. E. H. Smith, D. R. Barton, S. J. Guildford, W. D. Taylor, M. N. Charlton & T. Howell, 2004. The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Science 61: 1285–1293.CrossRefGoogle Scholar
  23. Hessen, D. O., T. Andersen, P. Brettum & B. A. Faafeng, 2003. Phytoplankton contribution to sestonic mass and elemental ratios in lakes: implications for zooplankton nutrition. Limnology and Oceanography 48: 1289–1296.CrossRefGoogle Scholar
  24. Huang, C. J. & F. L. Qiao, 2010. Wave-turbulence interaction and its induced mixing in the upper ocean. Journal of Geophysical Research: Ocean 115: C04026.Google Scholar
  25. Ivey, G. N. & J. C. Patterson, 1984. A model of vertical mixing in Lake Erie in summer. Limnology and Oceanography 29: 553–563.CrossRefGoogle Scholar
  26. Koseff, J. R., J. K. Holen, S. G. Monismith & J. E. Cloern, 1993. Coupled effects of vertical mixing and benthic grazing on phytoplankton populations in shallow, turbid estuaries. Journal of Marine Research 51: 843–868.CrossRefGoogle Scholar
  27. Leon, L. F., R. E. H. Smith, M. R. Hipsy, S. A. Bocaniov, S. N. Higgins, R. E. Hecky, J. P. Antenucci, J. A. Inberger & S. J. Guildford, 2011. Application of a 3D hydrodynamic-biological model for seasonal and spatial dynamics of water quality and phytoplankton in Lake Erie. Journal of Great Lakes Research 37: 41–53.CrossRefGoogle Scholar
  28. Liao, Q., H. A. Boostma & J. E. Xiao, 2009. Development of an in situ underwater particle image velocimetry (UWMPIV) system. Limnology and Oceanography: Methods 7: 169–184.Google Scholar
  29. Luo, L. & J. Wang, 2012. Simulating the 1998 spring bloom in Lake Michigan using a coupled physical-biological model. Journal of Geophysical Research: Ocean 117: C10011.Google Scholar
  30. Mellor, G. & A. Blumberg, 2004. Wave breaking and ocean surface layer thermal response. Journal of Physical Oceanography 34: 693–698.CrossRefGoogle Scholar
  31. Mellor, G. & T. Yamada, 1982. Development of a turbulent closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics 20: 851–875.CrossRefGoogle Scholar
  32. Mida, J. L., D. Scavia, G. L. Fahnenstiel, S. A. Pothoven, H. A. Vanderploeg & D. M. Dolan, 2010. Long-term and recent changes in southern Lake Michigan water quality with implications for present trophic status. Journal of Great Lakes Research 36: 42–49.CrossRefGoogle Scholar
  33. Mosley, C. & H. A. Bootsma, 2015. Phosphorus recycling by profunda quagga mussels (Dreissena rostriformis bugensis) in Lake Michigan. Journal of Great Lakes Research S3: 38–48.CrossRefGoogle Scholar
  34. Nalepa, T. F., D. L. Fanslow & S. A. Pothoven, 2010. Recent changes in density, biomass, recruitment, size structure, and nutritional state of Dreissena populations in southern Lake Michigan. Journal of Great Lakes Research 36: 5–19.CrossRefGoogle Scholar
  35. Nalepa, T. F., D. L. Fanslow, G. A. Land, K. Mabrey & M. Rowe, 2014. Lake-wide benthic surveys in Lake Michigan in 1995-95, 2000, 2005, and 2010: Abundances of the amnphipod Diporeia spp. and abundances and biomass of the mussels Dreissena polymorpha and Dreissena rostriformis bugensis. NOAA Technical Memorandum GLERL-164.Google Scholar
  36. Officer, C. B., T. J. Smayda & R. Mann, 1982. Benthic filter feeding: a natural eutrophication control. Marine Ecological Progress Series 9: 203–210.CrossRefGoogle Scholar
  37. Olofsson, P., E. V. Laake & E. Lars, 2007. Estimation of absorbed PAR across Scandinavia from satellite measurements: Part I: Incident PAR. Remote Sensing of Environment. 110: 252–261.CrossRefGoogle Scholar
  38. Ozersky, T., D. O. Evans & B. K. Ginn, 2015. Invasive mussels modify the cycling, storage and distribution of nutrients and carbon in a large lake. Freshwater Biology 60: 827–843.CrossRefGoogle Scholar
  39. Parsons, T. R., M. Takahashi & B. Hargrave, 1984. Biological Oceanographic Process, 3rd ed. Pergamon Press, New York.Google Scholar
  40. Pilcher, D. J., G. A. McKinley, H. A. Bootsma & V. Bennington, 2015. Physical and biogeochemical mechanisms of internal carbon cycling in Lake Michigan. Journal of Geophysical Research: Oceans 120: 2112–2128.Google Scholar
  41. Pilcher, D. J., G. A. McKinley, J. Kralj, H. A. Bootsma & E. D. Reavie, 2017. Modeled sensitivity of Lake Michigan productivity and zooplankton to changing nutrient concentrations and quagga mussels. Journal of Geophysical Research: Oceans. Physical and biogeochemical mechanisms of internal carbon cycling in Lake Michigan. Journal of Geophysical Research: Biogeosciences 122: 2032–2107.Google Scholar
  42. Pollard, R. T. & R. C. Millard, 1970. Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Research 17: 813–821.Google Scholar
  43. Pothoven, S. A. & G. L. Fahnenstiel, 2013. Recent change in summer chlorophyll a dynamics of southeastern Lake Michigan. Journal of Great Lakes Research 39: 287–294.CrossRefGoogle Scholar
  44. Rowe, M. D., E. J. Anderson, J. Wang & H. A. Vanderploeg, 2015. Modelling the effect of invasive quagga mussels on the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research 41: 49–65.CrossRefGoogle Scholar
  45. Rowe, M. D., E. J. Anderson, H. A. Vanderploeg, S. A. Pothoven, A. K. Elgin & J. Wang, 2017. Influence of invasive quagga mussels, phosphorus loads, and climate on spatial and temporal patterns of productivity in Lake Michigan: a biophysical modelling study. Limnol. Oceanogr. 62: 2629–2649.CrossRefGoogle Scholar
  46. Rucinski, D. K., D. Beletsky, J. V. DePinto, D. J. Schwab & D. Scaiva, 2010. A simple 1-dimensional, climate based dissolved oxygen model for the central basin of Lake Erie. Journal of Great Lakes Research 36: 465–476.CrossRefGoogle Scholar
  47. Scavia, D. & G. Fahnenstiel, 1987. Dynamics of Lake Michigan phytoplankton: mechanisms controlling epilimnetic communities. Journal of Great Lakes Research 13: 103–120.CrossRefGoogle Scholar
  48. Schwalb, A. N., D. Bouffard, T. Ozersky, L. Boegman & R. H. Smith, 2013. Impacts of hydrodynamics and benthic communities on phytoplankton distributions in a large, dreissenid-colonized lake (Lake Simcoe, Ontario, Canada). Inland Waters 3: 269–284.CrossRefGoogle Scholar
  49. Schwalb, A. N., D. Bouffard, L. Boegman, L. Leon, J. Winter, L. Molot & R. H. Smith, 2015. 3D modelling of dreissenid mussel impacts on phytoplankton in a large lake supports the nearshore shunt hypothesis and the importance of wind-driven hydrodynamics. Aquatic Science 77: 95–114.CrossRefGoogle Scholar
  50. Strayer, D. L. & K. A. Hattala, 2004. Effects of an invasive bivalve (Dreissena polymorpha) on fish in the Hudson River estuary. Canadian Journal of Fisheries and Aquatic Science 61: 924–941.CrossRefGoogle Scholar
  51. Troy, C. D., S. Ahmed, N. Hawley & A. Goodwell, 2012. Cross-shelf thermal variability in southern Lake Michigan during the stratified periods. Journal of Geophysical Research: Ocean 117(C2): 27.CrossRefGoogle Scholar
  52. Troy, C., D. Cannon, Q. Liao & H. A. Bootsma, 2016. Logarithmic velocity structure in the deep hypolimnetic waters of Lake Michigan. Journal of Geophysical Research: Oceans 121: 949–965.Google Scholar
  53. Turschak, B. A., D. Bunnell, S. Czesny, T. O. Höök, J. Janssen, D. Warner & H. A. Bootsma, 2014. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure. Ecology 95: 1243–1252.CrossRefPubMedGoogle Scholar
  54. Tyner, E. H., H. A. Bootsma & B. M. Lafrancois, 2015. Dreissenid metabolism and ecosystem-scale effects as revealed by oxygen consumption. Journal of Great Lakes Research 41: 27–37.CrossRefGoogle Scholar
  55. Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Science 59: 1209–1228.CrossRefGoogle Scholar
  56. Vanderploeg, H. A., J. R. Liebig, T. F. Nalepa, G. L. Fahnenstiel & S. A. Pothoven, 2010. Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research 36: 50–59.CrossRefGoogle Scholar
  57. Wang, B., Q. Liao, J. Xiao & H. A. Bootsma, 2013. A free-floating PIV system: measurements of small scale turbulence under the wind wave surface. Journal of Atmospheric and Oceanic Technology 30: 1494–1509.CrossRefGoogle Scholar
  58. Waples, J. T., H. A. Bootsma & J. V. Klump, 2016. How are coastal benthos fed? Limnology and Oceanography: Letters 2(1): 18–28.CrossRefGoogle Scholar
  59. Zhang, H. Y., D. A. Culver & L. Boegman, 2011. Dreissenids in Lake Erie: an algal filter or a fertilizer? Aquatic Invasions. 6: 175–194.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.School of Freshwater SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  3. 3.Lyles School of Civil EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations