Coexistence between native and nonnative species: the invasion process and adjustments in distribution through time for congeneric piranhas in a Neotropical floodplain

  • Amanda Cantarute Rodrigues
  • Herick Soares de Santana
  • Matheus Tenório Baumgartner
  • Luiz Carlos Gomes


Our goal was to report the progress of Serrasalmus marginatus invasion process in the upper Paraná River floodplain by exploring its mechanisms and coexistence with its native congeneric Serrasalmus maculatus. We described their temporal abundance variations; nonnative species’ predominance in specific habitats; recruitment effectiveness for both species and its spatial variations; spatial organization pattern of native and nonnative species; and how their abundance is related to their co-occurrence. Abundance data encompassed 26 years after the invasion, while the proportion analyses between the species occurred on a monthly basis and in different environments, and the spatial organization pattern was assessed using C-score index. Results showed that the population of nonnative species had a fast increase along the early years followed by a decrease in the population of the native species. Recently, their proportion seems to be stabilizing, apparently resulting from a differentiation on the use of resources. The species are allowed by the spatial organization pattern to coexist in the floodplain, despite their variable co-occurrence in different environments. It is possible to state the persistence of native species in the floodplain at lower abundances in relation to the nonnative species as well as when occupying different habitats.


Serrasalmus Co-occurrence Pre-adaptation hypothesis Spatial organization pattern Biological invasions 



The authors would like to thank the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia) of the Universidade Estadual de Maringá (UEM) for providing the samplings and logistical support; projects Pesquisas Ecológicas de Longa Duração (PELD) and Programa de Apoio ao Desenvolvimento Científico e Tecnológico e Ciências Ambientais (PADCT/CIAMB) for delivering the data.The authors would also like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for having granted the scholarship to ACR, HSS, and MTB, as well as Hugo José Message and Daniel Alves dos Santos for remarkable improvements to the earliest version of this manuscript. The authors also thank S. M. Thomaz and the two anonymous reviewers for their helpful comments.

Supplementary material

10750_2018_3541_MOESM1_ESM.pdf (92 kb)
Supplementary material 1 (PDF 91 kb)
10750_2018_3541_MOESM2_ESM.pdf (2.3 mb)
Supplementary material 2 (PDF 2308 kb)


  1. Agostinho, C. S., 2003. Reproductive aspects of piranhas Serrasalmus spilopleura and Serrasalmus marginatus into the upper Paraná river, Brazil. Brazilian Journal of Biology 63: 1–6.CrossRefGoogle Scholar
  2. Agostinho, C. S. & H. F. Júlio Jr., 2002. Observation of an invasion of the piranha Serrasalmus marginatus Valenciennes, 1847 (Osteichthyes, Serrasalmidae) into the Upper Paraná River, Brazil. Acta Scientiarum 24: 391–395.Google Scholar
  3. Agostinho, C. S. & E. E. Marques, 1994. Idade e crescimento das piranhas Serrasalmus spilopleura e Serrasalmus marginatus (Osteichthyes, Serrasalminae) do alto rio Paraná. Revista UNIMAR 16: 175–187.Google Scholar
  4. Agostinho, A. A. & M. Zalewski, 1996. A Planície Alagável do Alto Rio Paraná: Importância e Preservação. EDUEM, Maringá.Google Scholar
  5. Agostinho, A. A., H. F. Julio Jr. & M. Petrere Jr., 1994. Itaipu reservoir (Brazil): impacts of the impoundment on the fish fauna and fisheries. In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Oxford: 171–184.Google Scholar
  6. Agostinho, C. S., A. A. Agostinho, E. E. Marques & L. M. Bini, 1997a. Abiotic factors influencing piranha attacks on netted fish in the Upper Paraná River, Brazil. North American Journal of Fisheries Management 17: 712–718.CrossRefGoogle Scholar
  7. Agostinho, A. A., H. F. Júlio Jr., L. C. Gomes, L. M. Bini & C. S. Agostinho, 1997b. Composição, abundância e distribuição espaço-temporal da ictiofauna. In Vazzoler, A. E. A. M., A. A. Agostinho & N. S. Hahn (eds), A Planície de Inundação do Alto Rio Paraná: Aspectos Físicos, Biológicos e Socioeconômicos. EDUEM, Maringá: 179–208.Google Scholar
  8. Agostinho, C. S., N. S. Hahn & E. E. Marques, 2003a. Patterns of food resource use by two congeneric species of piranhas (Serrasalmus) on the upper Paraná River floodplain. Brazilian Journal of Biology 63: 177–182.CrossRefGoogle Scholar
  9. Agostinho, A. A., F. A. Lansac-Tôha & A. M. Takeda, 2003b. Relações entre macrófitas e fauna aquática e suas implicações no manejo. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e Manejo de Macrófitas Aquáticas. EDUEM, Maringá: 261–279.Google Scholar
  10. Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.CrossRefGoogle Scholar
  11. Agostinho, A. A., H. I. Suzuki, R. Fugi, D. C. Alves, L. H. Tonella & L. A. Espindola, 2015. Ecological and life history traits of Hemiodus orthonops in the invasion process: looking for clues at home. Hydrobiologia 746: 415–430.CrossRefGoogle Scholar
  12. Alexandre, P. C., E. A. Luiz, P. A. Piana, L. C. Gomes & A. A. Agostinho, 2004. Relação estoque-recrutamento para as piranhas Serrasalmus marginatus (Valenciennes, 1847) e Serrasalmus maculatus (Kner, 1860) no rio Baía, alto rio Paraná. Acta Scientiarum Biological Sciences 26: 303–307.Google Scholar
  13. Allen, C. R., K. T. Nemec, D. A. Wardwell, J. D. Hoffman, M. Brust, K. L. Decker, D. Fogell, J. Hogue, A. Lotz, T. Miller, M. Pummill, L. E. Ramirez-Yañez & D. R. Uden, 2013. Predictors of regional establishment success and spread of introduced non-indigenous vertebrates. Global Ecology and Biogeography 22: 889–899.CrossRefGoogle Scholar
  14. Alves, G. H. Z., B. R. S. Figueiredo, G. I. Manetta, P. A. Sacramento, R. M. Tófoli & E. Benedito, 2017. Trophic segregation underlies the coexistence of two piranha species after the removal of a geographic barrier. Hydrobiologia 797: 57–68.CrossRefGoogle Scholar
  15. Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík, J. R. U. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26: 333–339.CrossRefPubMedGoogle Scholar
  16. Blackburn, T. M., F. Essl, T. Evans, P. E. Hulme, J. M. Jeschke, I. Kühn, S. Kumschick, Z. Marková, A. Mrugała, W. Nentwig, J. Pergl, P. Pyšek, W. Rabitsch, A. Ricciardi, D. M. Richardson, A. Sendek, M. Vilà, J. R. U. Wilson, M. Winter, P. Genovesi & S. Bacher, 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLOS Biology 12: e1001850.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bøhn, T., P. Amundsen & A. Sparrow, 2008. Competitive exclusion after invasion? Biological Invasions 10: 359–368.CrossRefGoogle Scholar
  18. Catford, J. A., R. Jansson & C. Nilsson, 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity Distributions 15: 22–40.CrossRefGoogle Scholar
  19. Darwin, C., 1859. On the Origin of Species. J. Murray, London.Google Scholar
  20. Diez, J. M., J. J. Sullivan, P. E. Hulme, G. Edwards & R. P. Duncan, 2008. Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecology Letters 11: 674–681.CrossRefPubMedGoogle Scholar
  21. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.CrossRefPubMedGoogle Scholar
  22. Ehrenfeld, J. C., 2010. Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution and Systematics 41: 59–80.CrossRefGoogle Scholar
  23. Gallien, L. & M. Carboni, 2017. The community ecology of invasive species: where are we and what’s next? Ecography 40: 335–352.CrossRefGoogle Scholar
  24. Gois, K. S., F. M. Pelicice, L. C. Gomes & A. A. Agostinho, 2015. Invasion of an Amazonian cichlid in the Upper Paraná River: facilitation by dams and decline of a phylogenetically related species. Hydrobiologia 746: 401–413.CrossRefGoogle Scholar
  25. Gotelli, N. J. & D. J. McCabe, 2002. Species co-occurrence: a meta-analysis of J. T. Diamond’s assembly rules model. Ecology 83: 2091–2096.CrossRefGoogle Scholar
  26. Gubiani, E. A., L. C. Gomes, A. A. Agostinho & E. K. Okada, 2007. Persistence of fish population in the upper Paraná River: effects of water regulation by dams. Ecology of Freshwater Fish 16: 191–197.Google Scholar
  27. Havel, J. E., C. E. Lee & M. J. V. Zanden, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.CrossRefGoogle Scholar
  28. Jackman, S., 2012. pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, Stanford University. Department of Political Science, Stanford University. Stanford, CA. R package version 1.04.4.
  29. Jégu, M. & G. M. dos Santos, 2001. Mise au point à propos de Serrasalmus spilopleura Kner, 1858 et réhabilitation de S. maculatus Kner, 1858 (Characidae: Serrasalminae). Cybium 25: 119–143.Google Scholar
  30. Jeschke, J. M., S. Bacher, T. M. Blackburn, J. T. A. Dick, F. Essl, T. Evans, M. Gaertner, P. E. Hulme, I. Kühn, A. Mrugała, J. Pergl, P. Pyšek, W. Rabitsch, A. Ricciardi, D. M. Richardson, A. Sendek, M. Vilà, M. Winter & S. Kumschick, 2014. Defining the impact of non-native species. Conservation Biology 28: 1188–1194.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Júlio Júnior, H. F., C. Dei Tos, A. A. Agostinho & C. S. Pavanelli, 2009. A massive invasion of fish species after eliminating a natural barrier in the upper Paraná river basin. Neotropical Ichthyology 7: 709–718.CrossRefGoogle Scholar
  32. Kleunen, M., W. Dawson, D. Schlaepfer, J. M. Jeschke & M. Fischer, 2010. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecology Letters 13: 947–958.PubMedGoogle Scholar
  33. Kovalenko, K. E., E. D. Dibble, A. A. Agostinho & F. M. Pelicice, 2010. Recognition of non-native peacock bass, Cichla kelberi by native prey: testing the naiveté hypothesis. Biological Invasions 12: 3071–3080.CrossRefGoogle Scholar
  34. Li, S., T. Guo, M. W. Cadotte, Y. Chen, J. Kuang, Z. Hua, Y. Zeng, Y. Song, Z. Liu, W. Shu & J. Li, 2015a. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. Journal of Applied Ecology 52: 89–99.CrossRefGoogle Scholar
  35. Li, S., M. W. Cadotte, S. J. Meiners, Z. Hua, H. Shu, J. Li & W. Shu, 2015b. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalization conundrum. Ecology Letters 18: 1285–1292.CrossRefPubMedGoogle Scholar
  36. Lovell, S. J., S. F. Stone & L. Fernandez, 2006. The economic impacts of aquatic invasive species: a review of the literature. Agricultural and Resource Economics Review 35: 195–208.CrossRefGoogle Scholar
  37. Magellan, K. & E. García-Berthou, 2015. Influences of size and sex on invasive species aggression and native species vulnerability: a case for modern regression techniques. Reviews in Fish Biology and Fisheries 25: 537–549.CrossRefGoogle Scholar
  38. Martin, T. G., B. A. Wintle, J. R. Rhodes, P. M. Kuhnert, S. A. Field, S. J. Low-Choy, A. J. Tyre & H. J. Possingham, 2005. Zero tolerance ecology: improving ecological inference by modeling the source of zero observations. Ecology Letters 8: 1235–1246.CrossRefPubMedGoogle Scholar
  39. McPeek, M. A. & R. Gomulkiewicz, 2005. Assembling and depleting species richness in metacommunities. In Holyoak, M., M. A. Leibold & R. D. Holt (eds), Metacommunities: Spatial Dynamics and Ecological Communities. The University of Chicago Press, Chicago: 355–373.Google Scholar
  40. Moyle, P. B. & T. Light, 1996. Biological invasions of freshwater: empirical rules and assembly theory. Biological Conservation 78: 149–161.CrossRefGoogle Scholar
  41. Okada, E. K., A. A. Agostinho & L. C. Gomes, 2005. Spatial and temporal gradients in artisanal fisheries of a large Neotropical reservoir, the Itaipu Reservoir, Brazil. Canadian Journal of Fisheries and Aquatic Sciences 62: 714–724.CrossRefGoogle Scholar
  42. Pereira, L. S., F. T. Mise, L. F. C. Tencatt, M. T. Baumgartner & A. A. Agostinho, 2017. Is coexistence between non-native and native Erythrinidae species mediated by niche differentiation or environmental filtering? A case study in the upper Paraná River floodplain. Neotropical Ichthyology 15: e160142.Google Scholar
  43. Procheş, S., J. R. U. Wilson, D. M. Richardson & M. Rejmánek, 2008. Searching for phylogenetic pattern in biological invasions. Global Ecology and Biogeography 17: 5–10.Google Scholar
  44. R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  45. Ricciardi, A. & M. Mottiar, 2006. Does Darwin’s naturalization hypothesis explain fish invasions? Biological Invasions 8: 1403–1407.CrossRefGoogle Scholar
  46. Roberto, M. C., B. F. Santana & S. M. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.CrossRefGoogle Scholar
  47. Sazima, I. & F. A. Machado, 1990. Underwater observations of piranhas in western Brazil. Environmental Biology of Fishes 28: 17–31.CrossRefGoogle Scholar
  48. Simberloff, D., 2011. How common are invasion-induced ecosystem impacts? Biological Invasions 13: 1255–1268.CrossRefGoogle Scholar
  49. Skóra, F., V. Abilhoa, A. A. Padial & J. R. S. Vitule, 2015. Darwin’s hypotheses to explain colonization trends: evidence from a quasi-natural experiment and a new conceptual model. Diversity Distributions 21: 583–594.CrossRefGoogle Scholar
  50. Souza Filho, E. E., R. C. Rocha, E. Comunello & J. C. Stevaux, 2004. Effects of the Porto Primavera Dam on physical environment of the downstream floodplain. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and Its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 55–74.Google Scholar
  51. StatSoft, Inc., 2005. STATISTICA (data analysis software system). Version 7.1.
  52. Stone, L. & A. Roberts, 1990. The checkerboard score and species distributions. Oecologia 85: 74–79.CrossRefPubMedGoogle Scholar
  53. Strayer, D. L., 2012. Eight questions about invasions and ecosystem functioning. Ecology Letters 15: 1199–1210.CrossRefPubMedGoogle Scholar
  54. Strayer, D. L., V. T. Eviner, J. M. Jeschke & M. L. Pace, 2006. Understanding the long-term effects of species invasions. Trends in Ecology and Evolution 21: 645–651.CrossRefPubMedGoogle Scholar
  55. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.CrossRefGoogle Scholar
  56. Thuiller, W., L. Gallien, I. Boulangeat, F. Bello, T. Münkemüller, C. Roquet & S. Lavergne, 2010. Resolving Darwin’s naturalization conundrum: a quest for evidence. Diversity and Distributions 16: 461–475.CrossRefGoogle Scholar
  57. Vazzoler, A. E. A. M., 1986. Manual de métodos para estudos biológicos de populações de peixes: reprodução e crescimento. Programa Nacional de Zoologia, Brasília.Google Scholar
  58. Villares Junior, G. A., L. M. Gomiero & R. Goitein, 2008. Alimentação de Serrasalmus maculatus (Kner, 1858) (Characiformes; Serrasalminae) no trecho inferior da bacia do rio Sorocaba, São Paulo, Brasil. Acta Scientiarum Biological Science 30: 267–273.Google Scholar
  59. Vitule, J. R. S., F. Skóra & V. Abilhoa, 2012. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Diversity and Distributions 18: 111–120.CrossRefGoogle Scholar
  60. Wiens, J. J. & C. H. Graham, 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution and Systematics 36: 519–539.CrossRefGoogle Scholar
  61. Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Pretere Jr., C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. Torrente Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Sáenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo and Mekong. Science 351: 128–129.CrossRefPubMedGoogle Scholar
  62. Zeileis, A., C. Kleiber & S. Jackman, 2008. Regression models for count data in R. J Stat Softw 27.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amanda Cantarute Rodrigues
    • 1
  • Herick Soares de Santana
    • 1
  • Matheus Tenório Baumgartner
    • 1
  • Luiz Carlos Gomes
    • 1
  1. 1.Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos ContinentaisUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations