Distribution and coexistence patterns of phytoplankton in subtropical shallow lakes and the role of niche-based and spatial processes

  • Karine Felix Ribeiro
  • Cacinele Mariana da Rocha
  • Dilton de Castro
  • Lucia Ribeiro Rodrigues
  • Luciane Oliveira Crossetti
Primary Research Paper
  • 12 Downloads

Abstract

Phytoplankton is an important microbial component in many ecosystems, and thus, knowing the predictive variables of its distribution is very valuable. In this study, we evaluated the roles of niche-based and spatial processes on phytoplankton communities of nine lakes in southern Brazil (spatial distance covered of 220 km). Variation partitioning analysis was employed to determine the relative contributions of environmental and spatial variables on the distribution of prokaryotic (PRP) and eukaryotic (EUP) components of phytoplankton at multispatial extents. C-score analysis was carried out, at intra- and interlake scales, to examine whether phytoplankton species coexist less or more than expected by chance (taxa segregation and aggregation, respectively). Our results showed that, at broader spatial scales, both PRP and EUP distributions are mainly influenced by pure space, while at finer spatial scales, the two groups are mainly influenced by pure environment. PRP distribution at broader spatial scales was also significantly influenced by spatially structured environment, and was in general more affected by spatial variables than by EUP. Finally, a taxa segregation pattern was observed at the interlake scale. In general, our results suggest that niche-based processes are more important in structuring phytoplankton on the local scale while spatial processes on the regional scale.

Keywords

Microbial ecology Moran’s Eigenvector Map Environmental predictors Phytoplankton driving forces Freshwater ecosystems 

Notes

Acknowledgements

We thank the Laboratório de Águas, Sedimentos e Biologia do Pescado of the Centro de Estudos Costeiros, Limnológicos e Marinhos (Ceclimar-UFRGS) and the collaborators of the Taramandahy Project (ONG ANAMA) for their support in fieldwork. We also thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), a foundation of the Ministério da Educação (MEC), for the scholarship granted to the first author.

References

  1. APHA, 2012. Standard Methods for the Examination of Water and Waste Water, 21st ed. American Public Health Association, Washington, DC.Google Scholar
  2. Astorga, A., J. Oksanen, M. Luoto, J. Soininen, R. Virtanen & T. Muotka, 2012. Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Global Ecology and Biogeography 21: 365–375.CrossRefGoogle Scholar
  3. Baas-Becking, L. G. M., 1934. Geobiologie of Inleiding Tot de Milieukunde. W.B. Van Stockum & Zoon, The Hague.Google Scholar
  4. Bell, T., D. Ager, J. I. Song, J. A. Newman, I. P. Thompson, A. K. Liley & C. J. van der Gast, 2005. Larger islands house more bacterial taxa. Science 308: 1884.CrossRefPubMedGoogle Scholar
  5. Bocard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  6. Cardoso, L. S., C. R. Fragoso Jr., R. S. Souza & D. Motta-Marques, 2012. Hydrodynamic control of plankton spatial and temporal heterogeneity in subtropical shallow lakes. In Schulz, H. E., A. L. A. Simões & R. J. Lobosco (eds), Hydrodynamics – Natural Water Bodies. InTech, Rijeka, Croatia: 27–48.Google Scholar
  7. Chust, G., X. Irigoien, J. Chave & R. Harris, 2013. Latitudinal phytoplankton distribution and the neutral theory of biodiversity. Global Ecology and Biogeography 22: 531–543.CrossRefGoogle Scholar
  8. Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.CrossRefPubMedGoogle Scholar
  9. Crossetti, L. O. & C. E. M. Bicudo, 2005. Structural and functional phytoplankton responses to nutrient impoverishment in mesocosms placed in a shallow eutrophic reservoir (Garças Pond), São Paulo, Brazil. Hydrobiologia 541: 71–85.CrossRefGoogle Scholar
  10. Crump, B. C., H. E. Adams, J. E. Hobbie & G. W. Kling, 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88: 1365–1378.CrossRefPubMedGoogle Scholar
  11. Devercelli, M., P. Scarabotti, G. Mayora, B. Schneider & F. Giri, 2016. Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hydrobiologia 764: 139–156.CrossRefGoogle Scholar
  12. Diamond, J. M., 1975. Assembly of species communities. In Cody, M. L. & J. M. Diamond (eds), Ecology and Evolution of Communities. Harvard University Press, Cambridge, MA.Google Scholar
  13. Dray, S., 2009. packfor: Forward Selection with Permutation (Canoco p. 46). R package version 0.0-7/r58. http://R-Forge.R-project.org/projects/sedar/.
  14. Dray, S., R. Pélissier, P. Couteron, M. J. Fortin, P. Legendre, P. R. Peres-Neto, E. Bellier, R. Bivand, F. G. Blanchet, M. De Cáceres, A. B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse & H. H. Wagner, 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs 82: 257–262.CrossRefGoogle Scholar
  15. Drakare, S. & A. Liess, 2010. Local factors control the community composition of cyanobacteria in lakes while heterotrophic bacteria follow a neutral model. Freshwater Biology 55: 2447–2457.CrossRefGoogle Scholar
  16. Erős, T., P. Sály, P. Takács, A. Specziár & P. Bíró, 2012. Temporal variability in the spatial and environmental determinants of functional metacommunity organization – Stream fish in a human-modified landscape. Freshwater Biology 57: 1914–1928.CrossRefGoogle Scholar
  17. Fenchel, T. & B. J. Finlay, 2004. The ubiquity of small species: patterns of local and global diversity. BioScience 54: 777–784.CrossRefGoogle Scholar
  18. Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.CrossRefPubMedGoogle Scholar
  19. Freitas-Teixeira, L. M., J. E. Bohnenberger, L. H. R. Rodrigues, U. Schulz, D. Motta-Marques & L. O. Crossetti, 2016. Temporal variability determines phytoplankton structure over spatial organization in a large shallow heterogeneous subtropical lake. Inland Waters 6: 325–335.CrossRefGoogle Scholar
  20. Furrer, R., D. Nychka & S. Sain, 2011. Fields: Tools for Spatial Data. R package version 6.6. http://CRAN.R-project.org/package=fields.
  21. Gallego, I., T. A. Davidson, E. Jeppesen, et al., 2014. Disturbance from pond management obscures local and regional drivers of assemblages of primary producers. Freshwater Biology 59: 1406–1422.CrossRefGoogle Scholar
  22. Gotelli, N. J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.CrossRefGoogle Scholar
  23. Gotelli, N. J. & A. M. Ellison, 2002. Assembly rules for New England ant assemblages. Oikos 99: 591–599.CrossRefGoogle Scholar
  24. Gotelli, N. J. & D. J. McCabe, 2002. Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83: 2091–2096.CrossRefGoogle Scholar
  25. Green, J. L. & B. J. M. Bohannan, 2006. Spatial scaling of microbial biodiversity. Trends in Ecology and Evolution 21: 501–507.CrossRefPubMedGoogle Scholar
  26. Hanson, C. A., J. A. Fuhrman, M. C. Horner-Devine & J. B. H. Martiny, 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nature 10: 497–506.Google Scholar
  27. Hillebrand, H., D. Dürseken, D. Kirschiel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  28. Horner-Devine, M. C. & B. J. M. Bohannan, 2006. Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87: 100–108.CrossRefGoogle Scholar
  29. Horner-Devine, M. C., M. A. Leibold, V. H. Smith & B. J. M. Bohannan, 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecology Letters 6: 613–622.CrossRefGoogle Scholar
  30. Horner-Devine, M. C., K. K. Carney & B. J. M. Bohannan, 2004a. An ecological perspective on bacterial biodiversity. Proceedings of the Royal Society B 271: 113–122.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Horner-Devine, M. C., M. Lage, J. B. Hughes & B. J. M. Bohannan, 2004b. A taxa–area relationship for bacteria. Nature 432: 750–753.CrossRefPubMedGoogle Scholar
  32. Horner-Devine, M. C., J. M. Silver, M. A. Leibold, et al., 2007. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88: 1345–1353.CrossRefPubMedGoogle Scholar
  33. Huszar, V. L. M., J. C. Nabout, M. O. Appel, J. B. O. Santos, D. S. Abe & L. H. S. Silva, 2015. Environmental and not spatial processes (directional and non directional) shape the phytoplankton composition and functional groups in a large subtropical river basin. Journal of Plankton Research 37: 1190–1200.Google Scholar
  34. Hutchinson, G. E., 1961. The paradox of the plankton. The American Naturalist 95: 137–145.CrossRefGoogle Scholar
  35. Izaguirre, I., J. F. Saad, M. R. Schiaffino, et al., 2016. Drivers of phytoplankton diversity in Patagonian and Antarctic lakes across a latitudinal gradient (2150 km): the importance of spatial and environmental factors. Hydrobiologia 764: 157–170.CrossRefGoogle Scholar
  36. Johnson, Z., E. R. Zinser, A. Coe, N. P. McNulty, E. S. Woodward & S. W. Chisholm, 2006. Niche partitioning among prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737–1740.CrossRefPubMedGoogle Scholar
  37. Jones, M. M., H. Tuomisto, B. Clark & B. Olivas, 2006. Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. Journal of Ecology 94: 181–195.CrossRefGoogle Scholar
  38. Komárek, J. & K. Anagnostidis, 1999. Cyanoprokaryota. 1: Chroococcales. In Ettl, H., H. Heynig & D. Möllenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart: 1–548.Google Scholar
  39. Komárek, J. & K. Anagnostidis, 2005. Cyanoprokaryota. 2: Oscillatoriales. In Büdel, B., G. Gärtner, L. Krienitz & M. Schagerl (eds), Süßwasserflora von Mitteleuropa. Elsevier, Stuttgart-Munchen: 1–759.Google Scholar
  40. Komárek, J. & J. Komárková, 2004. Taxonomic review of the cyanoprokaryotic genera Planktothrix and Planktothricoides. Czech Phycology 4: 1–18.Google Scholar
  41. Komárek, J. & J. Komárková, 2006. Diversity of Aphanizomenon-like cyanobacteria. Czech Phycology 6: 1–32.Google Scholar
  42. Kristiansen, J., 1996. Dispersal of freshwater algae – a review. Hydrobiologia 336: 151–157.CrossRefGoogle Scholar
  43. Legendre, P. & L. Legendre, 2012. Numerical Ecology, 3rd ed. Elsevier, Oxford.Google Scholar
  44. Leoni, B., C. L. Marti, J. Imberger & L. Garibaldi, 2014. Summer spatial variations in phytoplankton composition and biomass in surface waters of a warm-temperate, deep, oligoholomictic lake: Lake Iseo, Italy. Inland Waters 4: 303–310.CrossRefGoogle Scholar
  45. Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The invert microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  46. Manly, B. J. F., 1995. A note on the analysis of species co-occurrences. Ecology 76: 1109–1115.CrossRefGoogle Scholar
  47. Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, et al., 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews 4: 102–112.PubMedGoogle Scholar
  48. Mazaris, A. D., M. Moustaka-Gouni, E. Michaloudi & D. C. Bobori, 2010. Biogeographical patterns of freshwater micro- and macroorganisms: a comparison between phytoplankton, zooplankton and fish in the eastern Mediterranean. Journal of Biogeography 37: 1341–1351.CrossRefGoogle Scholar
  49. McKnight, M. W., P. S. White, R. I. McDonald, J. F. Lamoreux, W. Sechrest, R. S. Ridgely & S. N. Stuart, 2007. Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biology 5: e272.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mikulyuk, A., S. Sharma, S. Van Egeren, E. Erdmann, M. Nault & J. Hauxwell, 2011. The relative role of environmental, spatial, and land-use patterns in explaining aquatic macrophyte community composition. Canadian Journal of Fisheries and Aquatic Sciences 68: 1778–1789.CrossRefGoogle Scholar
  51. Moresco, G. A., J. C. Bortolini, J. D. Dias, A. Pineda, S. Jati & L. C. Rodrigues, 2017. Drivers of phytoplankton richness and diversity components in Neotropical floodplain lakes, from small to large spatial scales. Hydrobiologia 799: 203–215.CrossRefGoogle Scholar
  52. Naselli-Flores, L. & J. Padisák, 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia 764: 303–313.CrossRefGoogle Scholar
  53. Naselli-Flores, L., R. Termine & R. Barone, 2016. Phytoplankton colonization patterns. Is species richness depending on distance among freshwaters and on their connectivity? Hydrobiologia 764: 103–113.CrossRefGoogle Scholar
  54. Oksanen, J., F. G. Blanchet, R. Kindt, et al., 2011. Vegan: community ecology package. R package ver. 2.0-2. http://CRAN.R-project.org/package.
  55. Östman, O., S. Drakare, E. S. Kritzberg, S. Langenheder, J. B. Logue & E. S. Lindström, 2010. Regional invariance among microbial communities. Ecology Letters 13: 118–127.CrossRefPubMedGoogle Scholar
  56. Padisák, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249: 135–156.CrossRefGoogle Scholar
  57. Padisák, J., G. Vasas & G. Borics, 2016. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia 764: 3–27.CrossRefGoogle Scholar
  58. Papke, R. T., N. B. Ramsing, M. M. Bateson & D. M. Ward, 2003. Geographic isolation in hot spring cyanobacteria. Environmental Microbiology 5: 650–659.CrossRefPubMedGoogle Scholar
  59. Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.CrossRefPubMedGoogle Scholar
  60. Qian, H. & R. E. Ricklefs, 2012. Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecology and Biogeography 21: 341–351.CrossRefGoogle Scholar
  61. R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org.
  62. Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology 3: 141–159.Google Scholar
  63. Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes with different trophic status? Hydrobiologia 129: 11–26.CrossRefGoogle Scholar
  64. Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge, MA.CrossRefGoogle Scholar
  65. Rosenzweig, M. L., 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  66. Santos, J. B. O., L. H. S. Silva, C. W. C. Branco & V. L. M. Huszar, 2016. The roles of environmental conditions and geographical distances on the species turnover of the whole phytoplankton and zooplankton communities and their subsets in tropical reservoirs. Hydrobiologia 764: 171–186.CrossRefGoogle Scholar
  67. Schneck, F., A. Schwarzbold, S. C. Rodrigues & A. S. Mello, 2011. Environmental variability drives phytoplankton assemblage persistence in a subtropical reservoir. Austral Ecology 36: 839–848.CrossRefGoogle Scholar
  68. Schwarzbold, A. & A. Schäfer, 1984. Gênese e morfologia das lagoas costeiras do Rio Grande do Sul, Brasil. Amazoniana 9: 87–104.Google Scholar
  69. Sharma, S., P. Legendre, M. De Cáceres & D. Boisclair, 2011. The role of environmental and spatial processes in structuring native and non-native fish communities across thousands of lakes. Ecography 34: 762–771.CrossRefGoogle Scholar
  70. Smith, V. H., B. L. Foster, J. P. Grover, R. D. Holt, M. A. Leibold & F. deNoyelles Jr., 2005. Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. Proceedings of the National Academy of Sciences of the USA 102: 4393–4396.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Soininen, J., M. Kokocinski, S. Estlander, J. Kotanen & J. Heino, 2007. Neutrality, niches, and determinants of plankton metacommunity structure across boreal wetland ponds. Écoscience 14: 146–154.CrossRefGoogle Scholar
  72. Stomp, M., J. Huisman, G. G. Mittelbach, E. Litchman & C. A. Klausmeier, 2011. Large-scale biodiversity patterns in freshwater phytoplanktont. Ecology 92: 2096–2107.CrossRefPubMedGoogle Scholar
  73. Stone, L. & A. Roberts, 1990. The checkerboard score and species distribution. Oecologia 85: 74–79.CrossRefPubMedGoogle Scholar
  74. Tirok, K. & U. Gaedke, 2007. The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change: long-term observations and model analysis. Oecologia 150: 625–642.CrossRefPubMedGoogle Scholar
  75. Tomazelli, L. J., S. R. Dillenburg & J. A. Villwock, 2000. Late Quaternary geological history of Rio Grande do Sul coastal plain, southern Brazil. Revista Brasileira de Geociências 30: 474–476.Google Scholar
  76. Utermöhl, H., 1958. Zur Vervolkomnung der quantitative Phytoplankton-Methodik. Mitteilung Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  77. Vanormelingen, P., K. Cottenie, E. Michels, K. Muylaert, W. Vyverman & L. de Meester, 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwater Biology 53: 2170–2183.Google Scholar
  78. Vergnon, R., N. K. Dulvy & R. P. Freckleton, 2009. Niches versus neutrality: uncovering the drivers of diversity in a species-rich community. Ecology Letters 12: 1079–1090.CrossRefPubMedGoogle Scholar
  79. Verleyen, E., W. Vyverman, M. Sterken, et al., 2009. The importance of dispersal related and local factors in shaping the taxonomic structure of diatom metacommunities. Oikos 118: 1239–1249.CrossRefGoogle Scholar
  80. Vrede, T., A. Ballantyne, C. Mille-Linblom, G. Algesten, C. Gudasz, S. Lindahl & A. K. Brunberg, 2009. Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biology 54: 331–344.CrossRefGoogle Scholar
  81. Wetzel, C. E., D. C. Bicudo, L. Ector, E. A. Lobo, J. Soininen, V. L. Landeiro & L. M. Bini, 2012. Distance decay of similarity in Neotropical diatom communities. PLoS One 7: e45071.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Whitaker, R. J., D. W. Grogan & J. W. Taylor, 2003. Geographic barriers isolate endemic populations of hyperthermophilic Archaea. Science 301: 976–978.CrossRefPubMedGoogle Scholar
  83. Whitton, B. A. & M. Potts, 2000. The Ecology of Cyanobacteria. Kluwer, Dordrecht.Google Scholar
  84. Xiao, L., R. Hu, L. Peng, L. Lei, Y. Feng & B. Han, 2016. Dissimilarity of phytoplankton assemblages in two connected tropical reservoirs: effects of water transportation and environmental filtering. Hydrobiologia 764: 127–138.CrossRefGoogle Scholar
  85. Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Karine Felix Ribeiro
    • 1
  • Cacinele Mariana da Rocha
    • 2
  • Dilton de Castro
    • 3
  • Lucia Ribeiro Rodrigues
    • 1
    • 4
  • Luciane Oliveira Crossetti
    • 1
    • 5
  1. 1.Programa de Pós-Graduação em EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratório de Águas, Sedimentos e Biologia do Pescado, Centro de Estudos Costeiros, Limnológicos e MarinhosUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.ONG Ação Nascente Maquiné (ANAMA)MaquinéBrazil
  4. 4.Programa de Pós-Graduação em Recursos Hídricos e Saneamento AmbientalUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Departamento de EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations