Skip to main content
Log in

Native macrophyte leaves influence more specialisation of neotropical shredder chironomids than invasive macrophyte leaves

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the composition and specialisation of shredder chironomids in an invasive white ginger lily (Hedychium coronarium) and in native pickerelweed (Pontederia cordata) leaves. We assumed that the difference of the chemical compound in macrophyte leaves would influence the shredder specialisation. A colonisation experiment was performed over 3 years (2013–2015) using 40 bags for each macrophyte species. The main macrophyte leaf chemical compounds (organic matter, nitrogen, phosphorus, cellulose, lignin, soluble polyphenols and soluble carbohydrates) were measured. The herbivore specialisation was estimated using the individual specialisation index (d′) and community specialisation index (H2′). White ginger lily had higher nitrogen and organic matter, resulting in a higher abundance of shredder specimens and lower specialisation than in native leaves. The Polypedilum fallax group, Stenochironomus and Endotribelos calophylli presented high individual specialisation (d′) in pickerelweed leaves, resulting in high community specialisation (H2′). The heterotrophic facilitation hypothesis explained the herbivores thriving in pickerelweed leaves due to their lower nutritional value. The intake-efficiency hypothesis explained the higher consumption of invasive plant tissue by Stenochironomus, due to its mining habit. We found evidence of evolutionary adaptation of freshwater herbivore eating habits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Association of Official Agricultural Chemists, 1995. Official Methods of Analysis of the AOAC. AOAC International, Arlington: 1–30.

    Google Scholar 

  • Bakker, E. S., K. A. Wood, J. F. Pagès, G. C. Veen, M. J. Christianen, L. Santamaría, B. A. Nolet & S. Hilt, 2016. Herbivory on freshwater and marine macrophytes: A review and perspective. Aquatic Botany 135: 18–36.

    Article  Google Scholar 

  • Biasi, C., A. M. Tonin, R. M. Restello & L. U. Hepp, 2013. The colonisation of leaf litter by Chironomidae (Diptera): the influence of chemical quality and exposure duration in a subtropical stream. Limnologica-Ecology and Management of Inland Waters 43: 427–433.

    Article  CAS  Google Scholar 

  • Borkent, A., 1984. The systematics and phylogeny of the Stenochironomus complex (Xestochironomus, Harrisius, and Stenochironomus) (Diptera: Chironomidae). Memoirs of the Entomological Society of Canada 116: 5–270.

    Article  Google Scholar 

  • Boyero, L., L. A. Barmuta, L. Ratnarajah, K. Schmidt & R. G. Pearson, 2012. Effects of exotic riparian vegetation on leaf breakdown by shredders: a tropical–temperate comparison. Freshwater Science 31: 296–303.

    Article  Google Scholar 

  • Blüthgen, N., F. Menzel & N. Blüthgen, 2006. Measuring specialization in species interaction networks. BMC Ecology 6: 1–12.

    Article  Google Scholar 

  • Carlsson, N. O. & J. O. Lacoursiere, 2005. Herbivory on aquatic vascular plants by the introduced golden apple snail (Pomacea canaliculata) in Lao PDR. Biological Invasions 7: 233–241.

    Article  Google Scholar 

  • Carreira, B. M., M. P. Dias & R. Rebelo, 2014. How consumption and fragmentation of macrophytes by the invasive crayfish Procambarus clarkii shape the macrophyte communities of temporary ponds. Hydrobiologia 721: 89–98.

    Article  CAS  Google Scholar 

  • Choi, C., C. Bareiss, O. Walenciak & E. M. Gross, 2002. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. Journal of Chemical Ecology 28: 2245–2256.

    Article  CAS  PubMed  Google Scholar 

  • Chung, N. & K. Suberkropp, 2009. Contribution of fungal biomass to the growth of the shredder Pycnopsyche gentilis(Trichoptera: Limnephilidae). Freshwater Biology 54: 2212–2224.

    Article  CAS  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Coelho-Silva, J. F., 1967. Noções Sobre Análise de Alimentos. Imprensa Universitária da Universidade Rural do Estado de Minas Gerais, Viçosa.

    Google Scholar 

  • Corbi, J. J. & S. Trivinho-Strixino, 2017. Chironomid species are sensitive to sugarcane cultivation. Hydrobiologia 785: 91–99.

    Article  CAS  Google Scholar 

  • Cornut, J., V. Ferreira, A. L. Gonçalves, E. Chauvet & C. Canhoto, 2015. Fungal alteration of the elemental composition of leaf litter affects shredder feeding activity. Freshwater Biology 60: 1755–1771.

    Article  CAS  Google Scholar 

  • de Castro, W. A. C., R. V. Almeida, M. B. Leite, R. H. Marrs & D. M. S. Matos, 2016. Invasion strategies of white ginger lily (Hedychium coronarium) J. König (Zingiberacea) under different competitive and environmental conditions. Environment and Experimental Botany 127: 55–62.

    Article  Google Scholar 

  • Dormann, C. F., J. Fruend, B. Gruber, M. C. F. Dormann & T. R. U. E. LazyData, 2016. Package ‘bipartite’.

  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.

    Article  CAS  Google Scholar 

  • Friedlin, B. & J. L. Gastwirth, 2000. Should the median test be retired from general use? The American Statistician 54: 161–164.

    Google Scholar 

  • Gonçalves Jr., J. F., R. S. Rezende, J. França & M. Callisto, 2012. Invertebrate colonization during leaf processing of native, exotic and artificial detritus in a tropical stream. Marine and Freshwater Research 65: 428–439.

    Article  Google Scholar 

  • Hammer, Ø., D. A. T Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9 pp.

  • König, R., L. U. Hepp & S. Santos, 2014. Colonisation of low-and high-quality detritus by benthic macroinvertebrates during leaf breakdown in a subtropical stream. Limnologica-Ecology and Management of Inland Waters 45: 61–68.

    Article  Google Scholar 

  • Koroiva, R., C. W. O. Souza, D. Toyama, F. Henrique-Silva & A. A. Fonseca-Gessner, 2013. Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae. Genetics and Molecular Research 12: 3421–3434.

    Article  CAS  PubMed  Google Scholar 

  • Kozovtis, A. R., M. M. C. Bustamente, C. R. Garofalo, S. Bucci, A. C. Franco, G. Goldstein & F. C. Meinzer, 2007. Nutrient reabsorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology 21: 1034–1043.

    Article  Google Scholar 

  • Kubanek, J., M. E. Hay, P. J. Brown, N. Lindquist & W. Fenical, 2001. Lignoid chemical defenses in the freshwater macrophyte Saururus cernuus. Chemoecology 11: 1–8.

    Article  CAS  Google Scholar 

  • Kuehne, L. M., J. D. Olden & E. S. Rubenson, 2016. Multi-trophic impacts of an invasive aquatic plant. Freshwater Biology 61: 1846–1861.

    Article  CAS  Google Scholar 

  • Leite-Rossi, L. A. & S. Trivinho-Strixino, 2012. Are sugarcane leaf-detritus well colonized by aquatic macroinvertebrates? Acta Limnologica Brasiliensia 24: 303–313.

    Article  Google Scholar 

  • Leite-Rossi, L. A., V. S. Saito, M. B. Cunha-Santino & S. Trivinho-Strixino, 2016. How does leaf litter chemistry influence its decomposition and colonization by shredder Chironomidae (Diptera) larvae in a tropical stream? Hydrobiologia 77: 119–130.

    Article  Google Scholar 

  • Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41: 195–224.

    Article  Google Scholar 

  • Lorenzi, H., 1991. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas, tóxicas e medicinais. Instituto Plantarum, Nova Odessa.

    Google Scholar 

  • Lorenzi, H. & H. Souza, 2001. Plantas ornamentais. Plantarum, São Paulo.

    Google Scholar 

  • Makkar, H. P., M. Blümmel, N. K. Borowy & K. Becker, 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture 61: 161–165.

    Article  CAS  Google Scholar 

  • Martin-Creuzburg, D., B. Beck & H. M. Freese, 2011. Food quality of heterotrophic bacteria for Daphnia magna: evidence for a limitation by sterols. FEMS Microbiology Ecology 76: 592–601.

    Article  PubMed  Google Scholar 

  • Matsuda, J. T., F. A. Lansac-Tôha, K. Martens, L. F. M. Velho, R. P. Mormul & J. Higuti, 2015. Association of body size and behavior of freshwater ostracods (Crustacea, Ostracoda) with aquatic macrophytes. Aquatic Ecology 49: 321–331.

    Article  CAS  Google Scholar 

  • Mertens, D. R., 2002. Gravimetric determination of amylase treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. Journal of AOAC International 85: 1217–1240.

    CAS  PubMed  Google Scholar 

  • Morrison, W. E. & M. E. Hay, 2011a. Induced chemical defenses in a freshwater macrophyte suppress herbivore fitness and the growth of associated microbes. Oecologia 165: 427–436.

    Article  PubMed  Google Scholar 

  • Morrison, W. E. & M. E. Hay, 2011b. Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve. PLoS One 6: e17227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison, W. E. & M. E. Hay, 2012. Are lower-latitude plants better defended? Palatability of freshwater macrophytes. Ecology 93: 65–74.

    Article  PubMed  Google Scholar 

  • Provenza, F. D., J. J. Villalba, L. E. Dziba, S. B. Atwood & R. E. Banner, 2003. Linking herbivore experience, varied diets, and plant biochemical diversity. Small Ruminant Research 49: 257–274.

    Article  Google Scholar 

  • R Development Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria [available on internet at http://www.R-project.org] (accessed 26.10.16).

  • Robertson, J. B. & P. J. Van Soest, 1981. The detergent system of analysis and its application to human foods. In James, W. P. T. & O. Theander (eds), The Analysis of Dietary Fiber in Food. Marcel Deller, New York: 123–158.

    Google Scholar 

  • Sanchez, J. L. & J. C. Trexler, 2016. The adaptive evolution of herbivory in freshwater systems. Ecosphere. https://doi.org/10.1002/ecs2.1414.

    Google Scholar 

  • Sarruge, J. R. & H. P. Haag, 1974. Análises Químicas em Plantas, Escola Superior de Agricultura Luiz de Queiroz. Universidade de São Paulo, Piracicaba.

    Google Scholar 

  • Saulino, H. H. L., J. J. Corbi & S. Trivinho-Strixino, 2014. Aquatic insect community structure under the influence of small dams in a stream of the Mogi-Guaçu river basin, state of São Paulo. Brazilian Journal of Biology 74: 79–88.

    Article  CAS  Google Scholar 

  • Theel, H. J., E. D. Dibble & J. D. Madsen, 2008. Differential influence of a monotypic and diverse native aquatic plant bed on a macroinvertebrate assemblage: an experimental implication of exotic plant induced habitat. Hydrobiologia 600: 77–87.

    Article  Google Scholar 

  • Tiner, R. W., 1991. The concept of a hydrophyte for wetland identification. Bioscience 41: 236–247.

    Article  Google Scholar 

  • Trivinho-Strixino, S., 2014. Ordem Diptera. Família Chironomidae. Guia de identificação de larvas. In Hamada, N., J. L. Nessimian, & R. B. Querino (eds), Insetos Aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus: 457–660

  • Zenni, R. D. & S. R. Ziller, 2011. An overview of invasive plants in Brazil. Brazilian Journal of Botany 34: 431–446.

    Article  Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd ed. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Wong, P. K., Y. A. N. Liang, N. Y. Liu & J. W. Qiu, 2010. Palatability of macrophytes to the invasive freshwater snail Pomacea canaliculata: differential effects of multiple plant traits. Freshwater Biology 55: 2023–2031.

    Article  Google Scholar 

  • Wood, K. A., M. T. O’Hare, C. McDonald, K. R. Searle, F. Daunt & R. A. Stillman, 2016. Herbivore regulation of plant abundance in aquatic ecosystems. Biological Reviews. https://doi.org/10.1111/brv.12272.

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Brazilian National Council for Technological and Scientific Development (CNPq) for the financial support throughout the research project process 141020/2013. Susana Trivinho-Strixino has a productivity grant awarded by CNPq (Process Number: 306402/2010-6). We would also like to thank Rebecca Clement from Brigham Young University who provided the first English language reviews.

Author information

Authors and Affiliations

Authors

Contributions

Saulino, HHL and Trivinho-Strixino, S designed the experiments and wrote the manuscript. Saulino, HHL performed the experiments and analysed the dates.

Corresponding author

Correspondence to Hugo Henrique Lanzi Saulino.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saulino, H.H.L., Trivinho-Strixino, S. Native macrophyte leaves influence more specialisation of neotropical shredder chironomids than invasive macrophyte leaves. Hydrobiologia 813, 189–198 (2018). https://doi.org/10.1007/s10750-018-3525-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3525-z

Keywords

Navigation