Spatial and temporal trends of target organic and inorganic micropollutants in Lake Maggiore and Lake Lugano (Italian-Swiss water bodies): contamination in sediments and biota

  • Licia Maria Guzzella
  • Stefano Novati
  • Nadia Casatta
  • Claudio Roscioli
  • Lucia Valsecchi
  • Andrea Binelli
  • Marco Parolini
  • Nicola Solcà
  • Roberta Bettinetti
  • Marina Manca
  • Michela Mazzoni
  • Roberta Piscia
  • Pietro Volta
  • Aldo Marchetto
  • Andrea Lami
  • Laura Marziali
LARGE AND DEEP PERIALPINE LAKES
  • 54 Downloads

Abstract

DDx, PCBs, PBDEs, Hg, and As contamination in sediments and aquatic organisms of different trophic levels (zooplankton, mussel, fish) were analyzed in Lake Maggiore and Lake Lugano, two large deep perialpine lakes. In the period 2001–2015, we analyzed the spatial and temporal trends of the considered pollutants to detect potential contamination sources and to compare concentrations with Sediment Quality Guidelines (SQGs) or existing Quality Standards (QSs). DDx and Hg contamination deriving from past industrial activities in the Pallanza Basin still exceeded SQGs in sediments and QSs in fish, with potential risks for the ecosystem. Banned in Europe in 1985, PCBs showed low residual values, while recent PBDE peaks resulted in the exceedance of the QSs for biota in both lakes, probably due to current industrial activities. Arsenic mainly derives from geochemical origin. The analysis of the biomagnification of toxicants in a pelagic food chain in Lake Maggiore (zooplankton–fish) according to a stable isotope approach is also presented, according to both the Trophic Magnification Factor and the Trophic Level-adjusted BioMagnification Factor: the importance of seasonality and a Hg > DDx ≈ PBDEs biomagnification capacity were observed. Low PCB bioaccumulation was detected in biota, probably because equilibrium was not reached yet in young fish.

Keywords

Toxicants Deep alpine lakes Biomagnification Food chain 

Notes

Acknowledgements

This work was supported by the International Commission for the Protection of the Italian-Swiss Common Waters (CIPAIS) within the research activity programs 2008–2012 and 2013–2015 “Investigations on DDT and hazardous substances—Lake Maggiore and Lake Ceresio.”

Supplementary material

10750_2017_3494_MOESM1_ESM.docx (248 kb)
Supplementary material 1 (DOCX 248 kb)

References

  1. Arnot, J. A. & F. A. P. C. Gobas, 2006. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews 14(4): 257–297.CrossRefGoogle Scholar
  2. Barbanti, L. & W. Ambrosetti, 1989. The physical limnology of Lago Maggiore: a review. Memorie dell’Istituto Italiano di Idrobiologia 46: 41–68.Google Scholar
  3. Barbieri, A. & B. Polli, 1992. Description of lake Lugano. Aquatic Sciences 54: 181–183.CrossRefGoogle Scholar
  4. Baudo, R., 1989. Metals in Lake Maggiore. Memorie dell’Istituto Italiano di Idrobiologia 46: 261–286.Google Scholar
  5. Bervoets, L., J. Voets, A. Covaci, S. Chu, D. Qadah, R. Smolders, P. Schepens & R. Blust, 2005. Use of transplanted zebra mussels (Dreissena polymorpha) to assess the bioavailability of microcontaminants in Flemish surface waters. Environmental Science & Technology 39: 1492–1505.CrossRefGoogle Scholar
  6. Bettinetti, R., S. Quadroni, S. Galassi, R. Bacchetta, L. Bonardi & G. Vailati, 2008. Is meltwater from Alpine glaciers a secondary DDT source for lakes? Chemosphere 73: 1027–1031.CrossRefPubMedGoogle Scholar
  7. Bettinetti, R., S. Galassi, L. Garibaldi, B. Leoni & S. Quadroni, 2012a. Zooplankton as an early warning signal of POPs contamination in deep lakes. Journal of Limnology 71(2): 335–338.CrossRefGoogle Scholar
  8. Bettinetti, R., S. Quadroni, M. Manca, R. Piscia, P. Volta, L. Guzzella, C. Roscioli & S. Galassi, 2012b. Seasonal fluctuations of DDTs and PCBs in zooplankton and fish of Lake Maggiore (Northern Italy). Chemosphere 88: 344–351.CrossRefPubMedGoogle Scholar
  9. Bettinetti, R., S. Quadroni, E. Boggio & S. Galassi, 2016. Recent DDT and PCB contamination in the sediment and biota of the Como Bay (Lake Como, Italy). Science of the Total Environment 542: 404–410.CrossRefPubMedGoogle Scholar
  10. Binelli, A., L. Guzzella & C. Roscioli, 2008. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in Zebra mussels (D. polymorpha) from Lake Maggiore (Italy). Environmental Pollution 153: 610–617.CrossRefPubMedGoogle Scholar
  11. Borgå, K., K. A. Kidd, D. C. G. Muir, O. Berglund, J. M. Conder, F. A. P. C. Gobas, J. Kucklick, O. Malm & D. E. Powell, 2012. Trophic Magnification Factors: considerations of ecology, ecosystems, and study design. Integrated Environmental Assessment and Management 8: 64–84.CrossRefPubMedGoogle Scholar
  12. Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences 93(20): 10844–10847.CrossRefGoogle Scholar
  13. Ceschi, M., M. De Rossa & M. Jäggli, 1996. Contaminanti organici, inorganici e radionuclidi nell’ittiofauna dei laghi Ceresio e Verbano (bacini svizzeri). Travaux de chimie alimentaire et d’hygiène 87: 189–211.Google Scholar
  14. CIPAIS (Commissione Internazionale per la Protezione delle Acque Italo-Svizzere), 1999. Ricerche sulla distribuzione e gli effetti del DDT nell’ecosistema Lago Maggiore. Rapporto finale sui risultati delle indagini. Pallanza, Verbania, Italy.Google Scholar
  15. CIPAIS (Commissione Internazionale per la Protezione delle Acque Italo-Svizzere), 2010. Lago Ceresio: indagini su DDT e sostanze pericolose. Rapporto annuale 2009. Pallanza, Verbania, Italy.Google Scholar
  16. CIPAIS (Commissione Internazionale per la Protezione delle Acque Italo-Svizzere), 2011. Indagini su DDT e sostanze pericolose nell’ecosistema del Lago Maggiore. Rapporto annuale 2011. Pallanza, Verbania, Italy.Google Scholar
  17. CIPAIS (Commissione Internazionale per la Protezione delle Acque Italo-Svizzere), 2013a. Lago Ceresio: indagini su DDT e sostanze pericolose. Rapporto annuale 2012. Pallanza, Verbania, Italy.Google Scholar
  18. CIPAIS (Commissione Internazionale per la Protezione delle Acque Italo-Svizzere), 2013b. Indagini su DDT e sostanze pericolose nell’ecosistema del Lago Maggiore. Rapporto annuale 2012. Rapporto finale 2008-2012. Pallanza, Verbania, Italy.Google Scholar
  19. CIPAIS (Commissione Internazionale per la Protezione delle Acque Italo-Svizzere), 2015a. Studi sull’evoluzione del Lago Maggiore: aspetti limnologici. Programma triennale 2013-2015. Campagna 2014. Pallanza, Verbania, Italy.Google Scholar
  20. CIPAIS (Commissione Internazionale per la Protezione delle Acque Italo-Svizzere), 2015b. Indagini su DDT e sostanze pericolose nell’ecosistema del Lago Maggiore. Rapporto annuale 2015 e finale 2013-2015. Pallanza, Verbania, Italy.Google Scholar
  21. CIPAIS (Commissione Internazionale per la Protezione delle Acque Italo-Svizzere), 2016. Lago di Lugano: indagine sulle sostanze pericolose. Contaminanti organici persistenti nella fauna ittica. Programma triennale 2013-2015. Campagna 2015. Pallanza, Verbania, Italy.Google Scholar
  22. Conder, J. M., F. A. P. C. Gobas, K. Borgå, D. C. G. Muir & D. E. Powell, 2012. Use of Trophic Magnification Factors and related measures to characterize bioaccumulation potential of chemicals. Integrated Environmental Assessment and Management 8: 85–97.CrossRefPubMedGoogle Scholar
  23. Conder, J. M., P. C. Fuchsman, M. M. Grover, V. S. Magar & M. H. Henning, 2015. Critical review of mercury sediment quality values for the protection of benthic invertebrates. Environmental Toxicology and Chemistry 34: 6–21.CrossRefPubMedGoogle Scholar
  24. Crimmins, B. S., J. J. Pagano, X. Xia, P. K. Hopke, M. S. Milligan & T. M. Holsen, 2012. Polybrominated Diphenyl Ethers (PBDEs): turning the corner in Great Lakes Trout 1980–2009. Environmental Science and Technology 46: 9890–9897.PubMedGoogle Scholar
  25. Cullon, D. L., M. B. Yunker, J. R. Christensen, R. W. Macdonald, M. J. Whiticar, N. J. Dangerfield & P. S. Ross, 2012. Biomagnification of polychlorinated biphenyls in a harbor seal (Phoca vitulina) food web from the strait of Georgia, British Columbia, Canada. Environmental Toxicology and Chemistry 31(11): 2445–2455.CrossRefPubMedGoogle Scholar
  26. de Wit, C. A., 2002. An overview of brominated flame retardants in the environment. Chemosphere 46: 583–624.CrossRefPubMedGoogle Scholar
  27. Eljarrat, E. & D. Barceló, 2003. Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. Trends in Analytical Chemistry 22: 655–665.CrossRefGoogle Scholar
  28. El-Shaarawi, A. H., S. Backus, R. Zhu & Y. Chen, 2011. Modelling temporal and spatial changes of PCBs in fish tissue from Lake Huron. Environmental Monitoring and Assesment 173: 611–623.CrossRefGoogle Scholar
  29. Fadda, A., R. Rawcliffe, B. M. Padedda, A. Luglie, N. Sechi, F. Camin, L. Ziller & M. Manca, 2014. Spatiotemporal dynamics of C and N isotopic signature of zooplankton: a seasonal study on a man-made lake in the Mediterranean region. Annales de Limnologie – International Journal of Limnology 50(4): 279–287.CrossRefGoogle Scholar
  30. FOEN (Federal Office for the Environment), 2006. Stockholm Convention on Persistent Organic Pollutants (POPs) – Swiss National Implementation. Berne, 4.2006.Google Scholar
  31. Grimalt, J. O., P. Fernandez, L. Berdie, R. M. Vilanova, J. Catalan, R. Psenner, R. Hofer, P. G. Appleby, B. O. Rosseland, L. Lien, J. C. Massabuau & R. W. Battarbee, 2001. Selective trapping of organochlorine compounds in mountain lakes of temperate areas. Environmental Science and Technology 35: 2690–2697.CrossRefPubMedGoogle Scholar
  32. Guilizzoni, P., S. N. Levine, M. Manca, A. Marchetto, A. Lami, W. Ambrosetti, A. Brauer, S. Gerli, E. A. Carrara, A. Rolla, L. Guzzella & D. A. L. Vignati, 2012. Ecological effects of multiple stressors on a deep lake (Lago Maggiore, Italy) integrating neo and palaeolimnological approaches. Journal of Limnology 71: 1–22.CrossRefGoogle Scholar
  33. Guzzella, L., L. Patrolecco, R. Pagnotta, L. Langone & P. Guilizzoni, 1998. DDT and other organochlorine compounds in the Lake Maggiore sediments: a recent point source of contamination. Fresenius Environmental Bulletin 7: 79–89.Google Scholar
  34. Guzzella, L., F. Salerno, M. Freppaz, C. Roscioli, F. Pisanello & G. Poma, 2016. POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): long-range atmospheric transport, glacier shrinkage, or local impact of tourism? The Science of the Total Environment 544: 382–390.CrossRefPubMedGoogle Scholar
  35. Hope, B. K. & J. Louch, 2013. Pre-anthropocene mercury residues in North American freshwater fish. Integrated Environmental Assessment and Management 10(2): 299–308.CrossRefGoogle Scholar
  36. Hu, G. C., J. Y. Dai, Z. C. Xu, X. J. Luo, H. Cao, J. S. Wang, B. X. Mai & M. Q. Xu, 2010. Bioaccumulation behavior of polybrominated diphenyl ethers (PBDEs) in the freshwater food chain of Baiyangdian Lake, North China. Environmental International 36(4): 309–315.CrossRefGoogle Scholar
  37. Hung, H., R. Kallenborn, K. Breivik, Y. Su, E. Brorström-Lundén, K. Olafsdottir, J. M. Thorlacius, S. Leppänen, R. Bossi & H. Skov, 2010. Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006. The Science of the Total Environment 408: 2854–2873.CrossRefPubMedGoogle Scholar
  38. IST-SUPSI (Istituto Scienze della Terra), 2016. Ricerche sull’evoluzione del Lago di Lugano. Aspetti limnologici. Programma quinquennale 2013-2015. Campagna 2015 e sintesi pluriennale. Commissione Internazionale per la Protezione delle Acque Italo-Svizzere (CIPAIS). Pallanza, Verbania, Italy.Google Scholar
  39. Kwan, K. H. M., H. M. Chan & Y. de Lafontaine, 2003. Metal contamination in zebra mussels (Dreissena polymorpha) along the St. Lawrence River. Environmental Monitoring and Assesment 88: 193–219.CrossRefGoogle Scholar
  40. Lavoie, R. A., T. D. Jardine, M. M. Chumchal, K. A. Kidd & L. M. Campbell, 2013. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environmental Science and Technology 47: 13385–13394.CrossRefPubMedGoogle Scholar
  41. Layman, C. A., M. S. Araujo, R. Boucek, E. Harrison, Z. R. Jud, P. Matich, C. M. Hammerschlag-Peyer, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post & S. Bearhop, 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 87(3): 545–562.CrossRefPubMedGoogle Scholar
  42. Lepom, P., U. Irmer & J. Wellmitz, 2012. Mercury levels and trends (1993–2009) in bream (Abramis brama L.) and zebra mussels (Dreissena polymorpha) from German surface waters. Chemosphere 86: 202–211.CrossRefPubMedGoogle Scholar
  43. MacDonald, D. D., C. G. Ingersoll & T. A. Berger, 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology 39: 20–31.CrossRefPubMedGoogle Scholar
  44. Marchetto, A., A. Lami, S. Musazzi, J. Masaferro, L. Langone & P. Guilizzoni, 2004. Lake Maggiore (N. Italy) trophic history: fossil diatoms, plant pigments, chironomids and comparison with long-term limnological data. Quaternary International 113: 97–110.CrossRefGoogle Scholar
  45. Marchetto, A., M. Rogora & S. Arisci, 2013. Trend analysis of atmospheric deposition data: a comparison of statistical approaches. Atmospheric Environment 64: 95–102.CrossRefGoogle Scholar
  46. Marziali, L., F. Rosignoli, A. Drago, S. Pascariello, L. Valsecchi, R. Bruno & L. Guzzella, 2017. Toxicity risk assessment of mercury, DDT and arsenic legacy pollution in sediments: a triad approach under low concentration conditions. Science of the Total Environment 593–594: 809–821.CrossRefPubMedGoogle Scholar
  47. Matthews, B. & A. Mazumder, 2005. Consequences of large temporal variability of zooplankton δ15N for modeling fish trophic position and variation. Limnology and Oceanography 50(5): 1404–1414.CrossRefGoogle Scholar
  48. Pfeifer, H.R., M.H. Dorron, D. Rey, C. Schlegel, O. Ateeia, R. Dalla Piazza, J.P. Dubois & Y. Mandia, 2000. Natural trace element input to the soil-sediment-water-plant system: examples of background and contaminated situations in Switzerlans, Eastren France and Northern Italy. In: B. Markert & K. Firese (eds), Trace elements – Their distribution and effects in the environment, Elsevier Science B.V.Google Scholar
  49. Pfeifer, H. R., A. Gueye-Girardet, D. Reymond, C. Schlegel, E. Temgoua, D. L. Hesterberg & J. W. Chou, 2004. Dispersion of natural arsenic in the Malcantone watershed, Southern Switzerland: field evidence for repeated sorption–desorption and oxidation–reduction processes. Geoderma 122: 205–234.CrossRefGoogle Scholar
  50. Pisanello, F., L. Marziali, F. Rosignoli, G. Poma, C. Roscioli, F. Pozzoni & L. Guzzella, 2016. In situ bioavailability of DDT and Hg in sediments of the Toce River (Lake Maggiore basin, Northern Italy): accumulation in benthic invertebrates and passive samplers. Environmental Science and Pollution Research International 23: 10542–10555.CrossRefPubMedGoogle Scholar
  51. Poma, G., P. Volta, C. Roscioli, R. Bettinetti & L. Guzzella, 2014. Concentrations and trophic interactions of novel brominated flame retardants, HBCD, and PBDEs in zooplankton and fish from Lake Maggiore (Northern Italy). The Science of the Total Environment 481: 401–408.CrossRefPubMedGoogle Scholar
  52. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3): 703–718.CrossRefGoogle Scholar
  53. Rasmussen, P. W., C. Schrank & M. C. W. Williams, 2014. Trends of PCB concentrations in Lake Michigan coho and chinook salmon, 1975–2010. Journal of Great Lakes Research 40: 748–754.CrossRefGoogle Scholar
  54. Riva, C., M. Parolini, A. Binelli & A. Provini, 2010. The case of pollution of Lake Maggiore: a twelve-year study with the bioindicator mussel Dreissena polymorpha. Water Air and Soil Pollution 210: 75–86.CrossRefGoogle Scholar
  55. Ruiz-Fernandez, C. A., F. J. Ontiveros-Cuadras, J. L. Sericano, J. A. Sanchez-Cabeza, L. L. W. Kwong, R. B. Dunbar, D. A. Mucciarone, L. H. Perez-Bernal & F. Páez-Osuna, 2014. Long-range atmospheric transport of persistent organic pollutants to remote lacustrine environments. The Science of the Total Environment 493: 505–520.CrossRefPubMedGoogle Scholar
  56. Salmaso, N. & R. Mosello, 2010. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Advances in Limnology and Oceanography 1: 29–66.CrossRefGoogle Scholar
  57. Schmid, P., M. Zennegg, P. Holm, C. Pietsch, B. Brüschweiler, A. Kuchen, E. Staub & J. Tremp, 2010. Polychlorierte Biphenyle (PCB) in Gewässer der Schweiz. Daten zur Belastung von Fischen und Gewässern mit PCB und Dioxinen, Situationsbeurteilung. Umwelt-Wissen 1002, Bundesamt für Umwelt: 1–101.Google Scholar
  58. Sharma, V. K. & M. Sohn, 2009. Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environment International 35: 743–759.CrossRefPubMedGoogle Scholar
  59. Solcà, N., M. De Rossa & M. Jermini, 2006. Monitoring of DDTs in fishes of the Lake Maggiore. Travaux de chimie alimentaire et d’hygiène 97: 348–357.Google Scholar
  60. Specht, W. & M. Tillkes, 1980. Gas-chromatographische Bestimmung von Rückständen an Pflanzenbehandlungs- mitteln nach Clean-up über Gel-Chromatographie und Mini-Kieselgel-Säulen-Chromatographie. 3 Mitteilung. Fresenius’ Journal of Analytical Chemistry 301: 300–307.CrossRefGoogle Scholar
  61. Specht, W. & M. Tillkes, 1985. Gas-chromatographische Bestimmung von Rückständen an Pflanzenbehandlungs mitteln nach Clean-up über Gel-Chromatographie und Mini-Kieselgel-Säulen-Chromatographie. 5 Mitteilung. Fresenius’ Journal of Analytical Chemistry 322: 443–455.CrossRefGoogle Scholar
  62. Steinwandter, H., 1985. Universal 5 min on-line method for extracting and isolating pesticide residues and industrial chemicals. Fresenius’ Journal of Analytical Chemistry 322: 752–754.CrossRefGoogle Scholar
  63. Tessier, A. & P. G. C. Campbell, 1987. Partitioning of trace metals in sediments: relationships with bioavailability. Hydrobiologia 149: 43–52.CrossRefGoogle Scholar
  64. Tremolada, P., S. Villa, P. Bazzarin, E. Bizzotto, R. Comolli & M. Vighi, 2008. POPs in mountain soils from the Alps and Andes: suggestions for a ‘precipitation effect’ on altitudinal gradients. Water, Air, & Soil Pollution 188: 93–109.CrossRefGoogle Scholar
  65. Ullrich, S. M., T. W. Tanton & S. Abdrashitova, 2001. Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science and Technology 31: 37–41.CrossRefGoogle Scholar
  66. US EPA, US Environmental Protection Agency, USACE, US Army Corps of Engineers, 1998. Evaluation of dredged material proposed for discharge in waters of the United States – Testing Manual. U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, Washington DC.Google Scholar
  67. van Drooge, B. L., G. Garriga, K. A. Koinig, R. Psenner, P. Pechan & J. O. Grimalt, 2014. Sensitivity of a remote alpine system to the Stockholm and LRTAP regulations in POP emissions. Atmosphere 5: 198–210.CrossRefGoogle Scholar
  68. Vignati, D. A. L. & P. Guilizzoni, 2011. Metalli nel Lago Maggiore: livelli naturali e antropici. Acqua & Aria 1: 22–27.Google Scholar
  69. Visconti, A. & M. Manca, 2011. Seasonal changes in the δ13C and δ15N signatures of the Lago Maggiore pelagic food web. Journal of Limnology 70(2): 263–271.CrossRefGoogle Scholar
  70. Visconti, A., P. Volta, A. Fadda, A. Di Guardo & M. Manca, 2013. Seasonality, littoral versus pelagic carbon sources, and stepwise 15N-enrichment of pelagic food web in a deep subalpine lake: the role of planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences 71(3): 436–446.CrossRefGoogle Scholar
  71. Vives, I., E. Canuti, J. Castro-Jimenez, E. H. Cristoph, S. J. Eisenreich, G. Hanke, T. Huber, G. Mariani, A. Mueller, H. Skejo, G. Umlaufa & J. Wollgasta, 2007. Occurrence of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in Lake Maggiore (Italy and Switzerland). Journal of Environmental Monitoring 9: 589–598.CrossRefPubMedGoogle Scholar
  72. Volta, P., P. Tremolada, M. C. Neri, G. Giussani & S. Galassi, 2009. Age-dependent bioaccumulation of organochlorine compounds in fish and their selective biotransformation in top predators from Lake Maggiore (Italy). Water, Air, & Soil Pollution 197: 193–209.CrossRefGoogle Scholar
  73. Walkley, A. & I. A. Black, 1934. An examination of the Deghtareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 27: 29–38.CrossRefGoogle Scholar
  74. Wang, S. & C. N. Mulligan, 2006. Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Science of the Total Environment 366: 701–721.CrossRefPubMedGoogle Scholar
  75. Wu, B., G. Wang, J. Wu, Q. Fu & C. Liu, 2014. Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs. PLoS ONE 9(7): e102101.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yu, Y. X., S. H. Zhang, N. B. Huang, J. L. Li, Y. P. Pang, X. Y. Zhang, Z. Q. Yu & Z. G. Xu, 2012. Polybrominated diphenyl ethers and polychlorinated biphenyls in freshwater fish from Taihu Lake, China: their levels and the factors that influence biomagnification. Environmental Toxicology and Chemistry 31(3): 542–549.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Licia Maria Guzzella
    • 1
  • Stefano Novati
    • 1
  • Nadia Casatta
    • 1
  • Claudio Roscioli
    • 1
  • Lucia Valsecchi
    • 1
  • Andrea Binelli
    • 3
  • Marco Parolini
    • 3
  • Nicola Solcà
    • 4
  • Roberta Bettinetti
    • 2
  • Marina Manca
    • 5
  • Michela Mazzoni
    • 2
  • Roberta Piscia
    • 5
  • Pietro Volta
    • 5
  • Aldo Marchetto
    • 5
  • Andrea Lami
    • 5
  • Laura Marziali
    • 1
  1. 1.CNR-IRSABrugherioItaly
  2. 2.DiSTA, Università degli Studi dell’InsubriaComoItaly
  3. 3.Dipartimento di Bioscienze, Università degli Studi di MilanoMilanItaly
  4. 4.SPAAS-UGRASBellinzonaSwitzerland
  5. 5.CNR-ISEPallanzaItaly

Personalised recommendations