Advertisement

Hydrobiologia

, Volume 811, Issue 1, pp 221–238 | Cite as

Habitat–fishery linkages in two major south-eastern Australian estuaries show that the C4 saltmarsh plant Sporobolus virginicus is a significant contributor to fisheries productivity

  • Vincent Raoult
  • Troy F. Gaston
  • Matthew D. Taylor
Primary Research Paper

Abstract

Estuarine fisheries productivity is dependent upon numerous factors, including the productivity of primary producers supporting the food web and the transport of organic matter derived from those primary producers. In this study, we use stable isotope ratios in a Bayesian mixing model to estimate the contribution of primary producers to fully recruited commercial species in two important estuarine commercial fisheries in south-eastern Australia; the Hunter and Clarence estuaries. The C4 saltmarsh plant Sporobolus virginicus had the greatest contribution to consumer diet among almost all sites and times (25–95%), though for prawns the presence of seagrass may be exerting some influence on this calculated contribution in the Clarence estuary. Particulate organic matter (POM; 30%) and fine benthic organic matter (FBOM; 39–41%) also contributed significantly to consumer diet. Mangroves and other C3 sources generally had the lowest contribution to consumers (1–31%). While the exact contributions of each source are uncertain within our Bayesian framework, these results highlight the relatively large role of saltmarsh habitat as a contributor to fishery productivity, especially in estuaries with no seagrasses. Given the anthropogenic threats to saltmarsh habitat, there is potential for loss of fishery productivity with further loss of saltmarsh areal extent.

Keywords

Habitat rehabilitation Habitat restoration Provisioning Carbon isotopes Mangroves SIMMR Bayesian mixing model 

Notes

Acknowledgements

We thank E. Mitchell, A. Becker, S. Walsh, H. Whitney, D. Cruz, N. Sarupak, and T. Ryan for assistance collecting samples throughout this project, and K. Russell and C. Copeland for guidance during the execution of the project. This Project was supported by the Fisheries Research and Development Corporation on behalf of the Australian Government (2013/006; project partners Origin Energy, Newcastle Ports Corporation, Hunter Water, and Hunter-Central Rivers Local Land Services). Funding bodies and project partners had no role in the design, data collection, analysis or interpretation of data. Sampling was carried out under permit P01/0059(A)-2.0 and Animal Research Authority NSW DPI 14/11.

Supplementary material

10750_2017_3490_MOESM1_ESM.pdf (669 kb)
Supplementary material 1 (PDF 669 kb)
10750_2017_3490_MOESM2_ESM.pdf (222 kb)
Supplementary material 2 (PDF 222 kb)
10750_2017_3490_MOESM3_ESM.pdf (219 kb)
Supplementary material 3 (PDF 219 kb)
10750_2017_3490_MOESM4_ESM.pdf (218 kb)
Supplementary material 4 (PDF 217 kb)
10750_2017_3490_MOESM5_ESM.docx (14 kb)
Supplementary material 5 (DOCX 13 kb)
10750_2017_3490_MOESM6_ESM.docx (14 kb)
Supplementary material 6 (DOCX 13 kb)

References

  1. Abrantes, K. & M. Sheaves, 2009. Food web structure in a near-pristine mangrove area of the Australian Wet Tropics. Estuarine, Coastal and Shelf Science 82(4): 597–607.CrossRefGoogle Scholar
  2. Abrantes, K. G., R. Johnston, R. M. Connolly & M. Sheaves, 2015. Importance of mangrove carbon for aquatic food webs in wet–dry tropical estuaries. Estuaries and Coasts 38(1): 383–399.CrossRefGoogle Scholar
  3. Alderson, B., D. Mazumder, N. Saintilan, K. Zimmerman & P. Mulry, 2013. Application of isotope mixing models to discriminate dietary sources over small-scale patches in saltmarsh. Marine Ecology Progress Series 487: 113–122.CrossRefGoogle Scholar
  4. Baker, H. K., J. A. Nelson & H. M. Leslie, 2016. Quantifying striped bass (Morone Saxatilis) dependence on saltmarsh-derived productivity using stable isotope analysis. Estuaries and Coasts 39(5): 1537–1542.CrossRefGoogle Scholar
  5. Becker, A. & M. D. Taylor, 2017. Nocturnal sampling reveals usage patterns of intertidal marsh and sub-tidal creeks by penaeid shrimp and other nekton in south-eastern Australia. Marine and Freshwater Research 68: 780–787.CrossRefGoogle Scholar
  6. Bergamino, L. & N. B. Richoux, 2015. Spatial and temporal changes in estuarine food web structure: differential contributions of marsh grass detritus. Estuaries and Coasts 38(1): 367–382.CrossRefGoogle Scholar
  7. Bond, A. L. & A. W. Diamond, 2011. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecological Applications 21(4): 1017–1023.PubMedCrossRefGoogle Scholar
  8. Bouillon, S., A. V. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N. C. Duke, E. Kristensen, S. Y. Lee, C. Marchand & J. J. Middelburg, 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22(2): 1–2.CrossRefGoogle Scholar
  9. Boys, C. A., F. J. Kroon, T. M. Glasby & K. Wilkinson, 2012. Improved fish and crustacean passage in tidal creeks following floodgate remediation. Journal of Applied Ecology 49(1): 223–233.CrossRefGoogle Scholar
  10. Caut, S., E. Angulo & F. Courchamp, 2009. Variation in discrimination factors (Δ15 N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46(2): 443–453.CrossRefGoogle Scholar
  11. Choong, M., P. Lucas, J. Ong, B. Pereira, H. Tan & I. Turner, 1992. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytologist 121(4): 597–610.CrossRefGoogle Scholar
  12. Choy, C. A., B. N. Popp, C. Hannides & J. C. Drazen, 2015. Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnology and Oceanography 60(4): 1156–1171.CrossRefGoogle Scholar
  13. Claudino, M. C., P. C. Abreu & A. M. Garcia, 2013. Stable isotopes reveal temporal and between-habitat changes in trophic pathways in a southwestern Atlantic estuary. Marine Ecology Progress Series 489: 29–42.CrossRefGoogle Scholar
  14. Connolly, R. M. & N. J. Waltham, 2015. Spatial analysis of carbon isotopes reveals seagrass contribution to fishery food web. Ecosphere 6(9): 1–12.CrossRefGoogle Scholar
  15. Connolly, R. M., A. Dalton & D. A. Bass, 1997. Fish use of an inundated saltmarsh flat in a temperate Australian estuary. Australian Journal of Ecology 22(2): 222–226.CrossRefGoogle Scholar
  16. Connolly, R. M., M. A. Guest, A. J. Melville & J. M. Oakes, 2004. Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 138(2): 161–167.PubMedCrossRefGoogle Scholar
  17. Connolly, R. M., J. S. Hindell & D. Gorman, 2005. Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Marine Ecology Progress Series 286: 69–79.CrossRefGoogle Scholar
  18. Creighton, C., P. I. Boon, J. D. Brookes & M. Sheaves, 2015. Repairing Australia’s estuaries for improved fisheries production—what benefits, at what cost? Marine and Freshwater Research 66(6): 493–507.CrossRefGoogle Scholar
  19. Cushing, D. H., 1971. Upwelling and the production of fish. Advances in Marine Biology 9: 255–334.CrossRefGoogle Scholar
  20. Deegan, L. A., J. E. Hughes & R. A. Rountree, 2002. Salt Marsh Ecosystem Support of Marine Transient Species. In Weinstein, M. P. & D. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publisher, Amsterdam: 333–365.CrossRefGoogle Scholar
  21. Eberhardt, A. L., D. M. Burdick, M. Dionne & R. E. Vincent, 2015. Rethinking the freshwater Eel: salt marsh trophic support of the American Eel, Anguilla rostrata. Estuaries and Coasts 38(4): 1251–1261.CrossRefGoogle Scholar
  22. Feng, J.-X., Q.-F. Gao, S.-L. Dong, Z.-L. Sun & K. Zhang, 2014. Trophic relationships in a polyculture pond based on carbon and nitrogen stable isotope analyses: a case study in Jinghai Bay, China. Aquaculture 428: 258–264.CrossRefGoogle Scholar
  23. Fockedey, N. & J. Mees, 1999. Feeding of the hyperbenthic mysid Neomysis integer in the maximum turbidity zone of the Elbe, Westerschelde and Gironde estuaries. Journal of Marine Systems 22(2): 207–228.CrossRefGoogle Scholar
  24. Fry, B., 2006. Stable Isotope Ecology. Springer, New York.CrossRefGoogle Scholar
  25. Fry, B. & K. Ewel, 2003. Using stable isotopes in mangrove fisheries research—a review and outlook. Isotopes In Environmental and Health Studies 39(3): 191–196.PubMedCrossRefGoogle Scholar
  26. Galván, D., C. Sweeting & N. Polunin, 2012. Methodological uncertainty in resource mixing models for generalist fishes. Oecologia 169(4): 1083–1093.PubMedCrossRefGoogle Scholar
  27. Garcia, A. M., M. C. Claudino, R. Mont’Alverne, P. E. R. Pereyra, M. Copertino & J. P. Vieira, 2017. Temporal variability in assimilation of basal food sources by an omnivorous fish at Patos Lagoon Estuary revealed by stable isotopes (2010–2014). Marine Biology Research 13(1): 98–107.CrossRefGoogle Scholar
  28. Gaston, T. F., T. A. Schlacher & R. M. Connolly, 2006. Flood discharges of a small river into open coastal waters: plume traits and material fate. Estuarine, Coastal and Shelf Science 69(1): 4–9.CrossRefGoogle Scholar
  29. Golet, W. J., A. B. Cooper, R. Campbell & M. Lutcavage, 2007. Decline in condition of northern bluefin tuna (Thunnus thynnus) in the Gulf of Maine. Fishery Bulletin 105(3): 390–395.Google Scholar
  30. Gray, C., M. Ives, W. Macbeth & B. Kendall, 2010. Variation in growth, mortality, length and age compositions of harvested populations of the herbivorous fish Girella tricuspidata. Journal of Fish Biology 76(4): 880–899.CrossRefGoogle Scholar
  31. Gray, C. & A. Miskiewicz, 2000. Larval fish assemblages in south-east Australian coastal waters: seasonal and spatial structure. Estuarine, Coastal and Shelf Science 50(4): 549–570.CrossRefGoogle Scholar
  32. Griffiths, S., 2001. Recruitment and growth of juvenile yellowfin bream, Acanthopagrus australis Guenther (Sparidae), in an Australian intermittently open estuary. Journal of Applied Ichthyology 17(5): 240–243.CrossRefGoogle Scholar
  33. Guest, M. A., R. M. Connolly, S. Y. Lee, N. R. Loneragan & M. J. Breitfuss, 2006. Mechanism for the small-scale movement of carbon among estuarine habitats: organic matter transfer not crab movement. Oecologia 148(1): 88–96.PubMedCrossRefGoogle Scholar
  34. Hadwen, W. L. & A. H. Arthington, 2007. Food webs of two intermittently open estuaries receiving 15 N-enriched sewage effluent. Estuarine, Coastal and Shelf Science 71(1): 347–358.CrossRefGoogle Scholar
  35. Hadwen, W. L., G. L. Russell & A. H. Arthington, 2007. Gut content-and stable isotope-derived diets of four commercially and recreationally important fish species in two intermittently open estuaries. Marine and Freshwater Research 58(4): 363–375.CrossRefGoogle Scholar
  36. Haines, E. B., 1976. Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh. Limnology and Oceanography 21(6): 880–883.CrossRefGoogle Scholar
  37. Hindell, J. & F. Warry, 2010. Nutritional support of estuary perch (Macquaria Colonorum) in a temperate Australian inlet: evaluating the relative importance of invasive Spartina. Estuarine, Coastal and Shelf Science 90(3): 159–167.CrossRefGoogle Scholar
  38. Hjort, J., 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapports et Procés-Verbaux des Réunions, Conseil International pour l’Exploration de la Mer 20: 228.Google Scholar
  39. Hoen, D. K., S. L. Kim, N. E. Hussey, N. J. Wallsgrove, J. C. Drazen & B. N. Popp, 2014. Amino acid 15 N trophic enrichment factors of four large carnivorous fishes. Journal of Experimental Marine Biology and Ecology 453: 76–83.CrossRefGoogle Scholar
  40. Hollingsworth, A. & R. M. Connolly, 2006. Feeding by fish visiting inundated subtropical saltmarsh. Journal of Experimental Marine Biology and Ecology 336(1): 88–98.CrossRefGoogle Scholar
  41. Hussey, N. E., M. A. MacNeil, B. C. McMeans, J. A. Olin, S. F. Dudley, G. Cliff, S. P. Wintner, S. T. Fennessy & A. T. Fisk, 2014. Rescaling the trophic structure of marine food webs. Ecology Letters 17(2): 239–250.PubMedCrossRefGoogle Scholar
  42. Hyndes, G. A., I. Nagelkerken, R. J. McLeod, R. M. Connolly, P. S. Lavery & M. A. Vanderklift, 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biological Reviews 89(1): 232–254.PubMedCrossRefGoogle Scholar
  43. Igulu, M., I. Nagelkerken, G. Van der Velde & Y. Mgaya, 2013. Mangrove fish production is largely fuelled by external food sources: a stable isotope analysis of fishes at the individual, species, and community levels from across the globe. Ecosystems 16(7): 1336–1352.CrossRefGoogle Scholar
  44. Industries, N. D. O. P., 2017. Fisheries Spatial Data Portal. In. http://www.dpi.nsw.gov.au/about-us/science-and-research/r-and-d/projects/spatial-data-portal Accessed 28 June 2017.
  45. Islam, M. S. & M. Haque, 2004. The mangrove-based coastal and nearshore fisheries of Bangladesh: ecology, exploitation and management. Reviews in Fish Biology and Fisheries 14(2): 153–180.CrossRefGoogle Scholar
  46. Josselyn, M. N. & A. C. Mathieson, 1980. Seasonal influx and decomposition of autochthonous macrophyte litter in a north temperate estuary. Hydrobiologia 71(3): 197–208.Google Scholar
  47. Kanaya, G., S. Takagi & E. Kikuchi, 2008. Dietary contribution of the microphytobenthos to infaunal deposit feeders in an estuarine mudflat in Japan. Marine Biology 155(5): 543–553.CrossRefGoogle Scholar
  48. Kimirei, I. A., I. Nagelkerken, Y. D. Mgaya & C. M. Huijbers, 2013. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes. PLoS ONE 8(6): e66320.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Komiyama, A., J. E. Ong & S. Poungparn, 2008. Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany 89(2): 128–137.CrossRefGoogle Scholar
  50. Laffaille, P., J.-C. Lefeuvre, M.-T. Schricke & E. Feunteun, 2001. Feeding ecology of o-group sea bass, Dicentrarchus labrax, in salt marshes of Mont Saint Michel Bay (France). Estuaries 24(1): 116–125.CrossRefGoogle Scholar
  51. Layman, C. A., D. A. Arrington, C. G. Montaña & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88(1): 42–48.PubMedCrossRefGoogle Scholar
  52. Lebreton, B., P. Richard, E. P. Parlier, G. Guillou & G. F. Blanchard, 2011. Trophic ecology of mullets during their spring migration in a European saltmarsh: a stable isotope study. Estuarine, Coastal and Shelf Science 91(4): 502–510.CrossRefGoogle Scholar
  53. Linthurst, R. A. & R. J. Reimold, 1978. Estimated net aerial primary productivity for selected estuarine angiosperms in Maine, Delaware, and Georgia. Ecology 59(5): 945–955.CrossRefGoogle Scholar
  54. Loneragan, N., S. Bunn & D. Kellaway, 1997. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Marine Biology 130(2): 289–300.CrossRefGoogle Scholar
  55. Marcum, K. & C. Murdoch, 1992. Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytologist 120(2): 281–288.CrossRefGoogle Scholar
  56. McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2): 378–390.CrossRefGoogle Scholar
  57. McMahon, K. W., B. J. Johnson & W. G. Ambrose, 2005. Diet and movement of the killifish, Fundulus heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses. Estuaries and Coasts 28(6): 966–973.CrossRefGoogle Scholar
  58. McMahon, K. W., S. R. Thorrold, T. S. Elsdon & M. D. McCarthy, 2015. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnology and Oceanography 60(3): 1076–1087.CrossRefGoogle Scholar
  59. Melville, A. J. & R. M. Connolly, 2003. Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia 136(4): 499–507.PubMedCrossRefGoogle Scholar
  60. Melville, A. J. & R. M. Connolly, 2005. Food webs supporting fish over subtropical mudflats are based on transported organic matter not in situ microalgae. Marine Biology 148(2): 363–371.CrossRefGoogle Scholar
  61. Middelburg, J. J., C. Barranguet, H. T. Boschker, P. M. Herman, T. Moens & C. H. Heip, 2000. The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnology and Oceanography 45(6): 1224–1234.CrossRefGoogle Scholar
  62. Miller, T. W., K. L. Bosley, J. Shibata, R. D. Brodeur, K. Omori & R. Emmett, 2013. Contribution of prey to Humboldt squid Dosidicus gigas in the northern California Current, revealed by stable isotope analyses. Marine Ecology Progress Series 477: 123–134.CrossRefGoogle Scholar
  63. Montgomery, S., 1990. Movements of juvenile eastern king prawns, Penaeus plebejus, and identification of stock along the east coast of Australia. Fisheries Research 9(3): 189–208.CrossRefGoogle Scholar
  64. Motomori, K., H. Mitsuhashi & S. Nakano, 2001. Influence of leaf litter quality on the colonization and consumption of stream invertebrate shredders. Ecological Research 16(2): 173–182.CrossRefGoogle Scholar
  65. Ortega-Cisneros, K., U. Scharler & A. Whitfield, 2016. Carbon and nitrogen system dynamics in three small South African estuaries, with particular emphasis on the influence of seasons, river flow and mouth state. Marine Ecology Progress Series 557: 17–30.CrossRefGoogle Scholar
  66. Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source Partitioning using stable isotopes: coping with too much variation. PLoS ONE 5(3): e9672.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Parnell, A. C., D. L. Phillips, S. Bearhop, B. X. Semmens, E. J. Ward, J. W. Moore, A. L. Jackson, J. Grey, D. J. Kelly & R. Inger, 2013. Bayesian stable isotope mixing models. Environmetrics 24(6): 387–399.Google Scholar
  68. Pauly, D. & V. Christensen, 1995. Primary production to sustain global fisheries. Nature 374(6519): 255–257.CrossRefGoogle Scholar
  69. Pease, B., J. Bell, J. Burchmore, M. Middleton & D. Pollard, 1981. The ecology of fish in botany bay-biology of commercially and recreationally valuable species. State Pollution Control Commission, Sydney.Google Scholar
  70. Phillips, D. L., R. Inger, S. Bearhop, A. L. Jackson, J. W. Moore, A. C. Parnell, B. X. Semmens & E. J. Ward, 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92(10): 823–835.CrossRefGoogle Scholar
  71. Quan, W., C. Fu, B. Jin, Y. Luo, B. Li, J. Chen & J. P. Wu, 2007. Tidal marshes as energy sources for commercially important nektonic organisms: stable isotope analysis. Marine Ecology Progress Series 352: 89–99.CrossRefGoogle Scholar
  72. Rayner, D. & W. Glamore, 2010. Tidal innundation and wetland restoration of Tomago wetland: Hydrodynamic modelling. WRL Technical Report No. 30, University of NSW.Google Scholar
  73. Ricklefs, R. E., 2010. Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proceedings of the National Academy of Sciences 107(4): 1265–1272.CrossRefGoogle Scholar
  74. Roff, D. A., 1983. An allocation model of growth and reproduction in fish. Canadian Journal of Fisheries and Aquatic Sciences 40(9): 1395–1404.CrossRefGoogle Scholar
  75. Rogers, K., E. J. Knoll, C. Copeland & S. Walsh, 2015. Quantifying changes to historic fish habitat extent on north coast NSW floodplains,Australia. Regional Environmental Change 16(5): 1469–1479.CrossRefGoogle Scholar
  76. Roy, P. S., R. J. Williams, A. R. Jones, I. Yassini, P. J. Gibbs, B. Coates, R. J. West, P. R. Scanes, J. P. Hudson & S. Nichol, 2001. Structure and function of south-east Australian estuaries. Estuarine Coastal and Shelf Science 53(3): 351–384.CrossRefGoogle Scholar
  77. Rozas, L. P., 1995. Hydroperiod and its influence on nekton use of the salt marsh: a pulsing ecosystem. Estuaries 18(4): 579–590.CrossRefGoogle Scholar
  78. Saintilan, N. & D. Mazumder, 2010. Fine-scale variability in the dietary sources of grazing invertebrates in a temperate Australian saltmarsh. Marine and Freshwater Research 61(5): 615–620.CrossRefGoogle Scholar
  79. Saintilan, N., K. Rogers, D. Mazumder & C. Woodroffe, 2013. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science 128: 84–92.CrossRefGoogle Scholar
  80. Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41(1–3): 137–175.CrossRefGoogle Scholar
  81. Schelske, C. L. & E. P. Odum, 1961. Mechanisms maintaining high productivity in Georgia estuaries. Proceedings of the Gulf and Caribbean Fisheries Institute 14: 75–80.Google Scholar
  82. Selleslagh, J., H. Blanchet, G. Bachelet & J. Lobry, 2015. Feeding habitats, connectivity and origin of organic matter supporting fish populations in an estuary with a reduced intertidal area assessed by stable isotope analysis. Estuaries and Coasts 38(5): 1431–1447.CrossRefGoogle Scholar
  83. Semmens, B. X., E. J. Ward, A. C. Parnell, D. L. Phillips, S. Bearhop, R. Inger, A. Jackson & J. W. Moore, 2013. Statistical basis and outputs of stable isotope mixing models: comment on Fry (2013). Marine Ecology Progress Series 490: 285–289.CrossRefGoogle Scholar
  84. Sheaves, M., 2017. How many fish use mangroves? The 75% rule an ill-defined and poorly validated concept. Fish and Fisheries 18(4): 778–789.CrossRefGoogle Scholar
  85. Sheaves, M., J. Brookes, R. Coles, M. Freckelton, P. Groves, R. Johnston & P. Winberg, 2014. Repair and revitalisation of Australia’s tropical estuaries and coastal wetlands: opportunities and constraints for the reinstatement of lost function and productivity. Marine Policy 47: 23–38.CrossRefGoogle Scholar
  86. Sheaves, M., R. Johnston & R. Baker, 2016. Use of mangroves by fish: new insights from in-forest videos. Marine Ecology Progress Series 549: 167–182.CrossRefGoogle Scholar
  87. Silberschneider, V. & C. Gray, 2008. Synopsis of biological, fisheries and aquaculture-related information on mulloway Argyrosomus japonicus (Pisces: Sciaenidae), with particular reference to Australia. Journal of Applied Ichthyology 24(1): 7–17.Google Scholar
  88. Sundby, S., 2000. Recruitment of Atlantic cod stocks in relation to temperature and advectlon of copepod populations. Sarsia 85(4): 277–298.CrossRefGoogle Scholar
  89. Svensson, C. J., G. A. Hyndes & P. S. Lavery, 2007. Food web analysis in two permanently open temperate estuaries: consequences of saltmarsh loss? Marine Environmental Research 64(3): 286–304.PubMedCrossRefGoogle Scholar
  90. Taylor, M. D., 2016. Identifying and understanding nursery habitats for exploited penaeid shrimp in NSW estuaries. In 25th Annual NSW Coastal Conference, 9–11th November, 2016, Coffs Harbour: 1–8.Google Scholar
  91. Taylor, D. & B. Allanson, 1995. Organic carbon fluxes between a high marsh and estuary, and the inapplicability of the outwelling hypothesis. Marine ecology progress series Oldendorf 120(1): 263–270.CrossRefGoogle Scholar
  92. Taylor, M. D. & A. Ko, 2011. Monitoring acoustically tagged king prawns Penaeus (Melicertus) plebejus in an estuarine lagoon. Marine Biology 158(4): 835–844.CrossRefGoogle Scholar
  93. Taylor, M. D., J. A. Smith, C. A. Boys & H. Whitney, 2016. A rapid approach to evaluate putative nursery sites for penaeid prawns. Journal of Sea Research 114: 26–31.CrossRefGoogle Scholar
  94. Taylor, M. D., A. Becker, N. A. Moltschaniwskyj & T. F. Gaston, 2017a. Direct and indirect interactions between lower estuarine mangrove and saltmarsh habitats and a commercially important penaeid shrimp. Estuaries and Coasts.  https://doi.org/10.1007/s12237-017-0326-y.PubMedGoogle Scholar
  95. Taylor, M. D., B. Fry, A. Becker & N. A. Moltschaniwskyj, 2017b. The role of connectivity and physicochemical conditions in effective habitat of two exploited penaeid species. Ecological Indicators.  https://doi.org/10.1016/j.ecolind.2017.04.050.Google Scholar
  96. Team, R. C., 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  97. Turner, R. E., 1977. Intertidal vegetation and commercial yields of penaeid shrimp. Transactions of the American Fisheries Society 106(5): 411–416.CrossRefGoogle Scholar
  98. Tyler, A. V. & R. S. Dunn, 1976. Ration, growth, and measures of somatic and organ condition in relation to meal frequency in Winter Flounder, Pseudopleuronectes americanus, with hypotheses regarding population homeostasis. Journal of the Fisheries Research Board of Canada 33(1): 63–75.  https://doi.org/10.1139/f76-008.CrossRefGoogle Scholar
  99. Webster, I. T., P. W. Ford & B. Hodgson, 2002. Microphytobenthos contribution to nutrient-phytoplankton dynamics in a shallow coastal lagoon. Estuaries 25(4): 540–551.CrossRefGoogle Scholar
  100. Werner, F. E., R. I. Perry, R. G. Lough & C. E. Naimie, 1996. Trophodynamic and advective influences on Georges Bank larval cod and haddock. Deep Sea Research Part II: Topical Studies in Oceanography 43(7): 1793–1822.CrossRefGoogle Scholar
  101. West, J. M. & J. B. Zedler, 2000. Marsh-creek connectivity: fish use of a tidal salt marsh in southern California. Estuaries and Coasts 23(5): 699–710.CrossRefGoogle Scholar
  102. White, D. A., T. E. Weiss, J. M. Trapani & L. B. Thien, 1978. Productivity and decomposition of the dominant salt marsh plants in Louisiana. Ecology 59(4): 751–759.CrossRefGoogle Scholar
  103. Whitfield, A. K., 1988. The role of tides in redistributing macrodetrital aggregates within the Swartvlei Estuary. Estuaries 11(3): 152–159.CrossRefGoogle Scholar
  104. Whitfield, A. K., 2017. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology and Fisheries 27(1): 75–110.CrossRefGoogle Scholar
  105. Williams, R. & I. Thiebaud, 2007. An analysis of changes to aquatic habitats and adjacent land-use in the downstream portion of the Hawkesbury Nepean River over the past sixty years. NSW Department of Primary Industries-Fisheries Final Report Series (91).Google Scholar
  106. Williams, R. J., F. A. Watford & V. Balashov, 2000. Kooragang Wetland Rehabilitation Project: History of Changes to Estuarine Wetlands of the Lower Hunter River. NSW Fisheries, Cronulla.Google Scholar
  107. Wilson, J. & J. Hacker, 1987. Comparative digestibility and anatomy of some sympatric C3 and C4 arid zone grasses. Australian Journal of Agricultural Research 38(2): 287–295.CrossRefGoogle Scholar
  108. Wilson, J. & P. Hattersley, 1989. Anatomical characters and digestibility of leaves of Panicum and other grass genera with C3 and different types of C4 photosynthetic pathway. Australian Journal of Agricultural Research 40(1): 125–136.CrossRefGoogle Scholar
  109. Zagursky, G. & R. J. Feller, 1985. Macrophyte detritus in the winter diet of the estuarine mysid, Neomysis americana. Estuaries and Coasts 8(4): 355–362.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental and Life SciencesUniversity of NewcastleCallaghanAustralia
  2. 2.Port Stephens Fisheries InstituteNew South Wales Department of Primary IndustriesTaylors BeachAustralia

Personalised recommendations