Hydrobiologia

, Volume 815, Issue 1, pp 1–19 | Cite as

Paleoecology explains Holocene chemical changes in lakes of the Nhecolândia (Pantanal-Brazil)

  • Renato Lada Guerreiro
  • Michael M. McGlue
  • Jeffery R. Stone
  • Ivan Bergier
  • Mauro Parolin
  • Silane A. F. da Silva Caminha
  • Lucas V. Warren
  • Mario L. Assine
Primary Research Paper

Abstract

The objective of this research is to examine the history of lentic ecosystem salinity in the southern Pantanal wetlands (Brazil). The timing and controls on hydrochemical changes were inferred using sponge spicule and diatom paleoecology on a Holocene-aged sediment core from Nhecolândia, a lake district situated on a fossil lobe of the Taquari megafan. The oldest portion of the core contains Heterorotula fistula spicules, indicative of an ephemeral freshwater lake that existed until ~ 4.6 cal ka BP. Benthic diatoms of the genus Gomphonema and Eunotia appeared ~ 3.2 cal ka BP, indicating a shallow and dystrophic environment. A transition to a more permanent lake that hosted freshwater sponges (e.g., Corvoheteromeyenia spp.), and diatom assemblages (e.g., Cyclotella meneghiniana, Aulacoseira pantanalensis) endured until ~ 1.3 cal year BP; after this time, most sponges and planktic diatoms disappear from the sedimentary record. High abundances of Anomoeoneis sphaerophora and Craticula guaykuruorum in the latest Holocene reflect a transition to a hyperalkaline, saline lake environment. The results suggest that Nhecolândia’s saline lakes may evolve from freshwater precursors due to local (biochemical) and regional (geo-climatic) controls on water availability, which has implications for patterns of biodiversity and ecosystems services in Pantanal.

Keywords

Diatoms Paleolimnology Pantanal wetlands Saline lakes Sponge spicules 

Notes

Acknowledgements

The authors are grateful to the São Paulo Research Foundation (FAPESP) for financial support of this project (Grant #2014/06889-2). We thank the National Council for Scientific and Technological Development (CNPq) for research grants to LVW and MLA (grant #308563/2013-1) and to SAFSC (Grant #476020/2013-1), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for a doctorate scholarship to RLG, the University of Kentucky Vice President for Research for a seed grant to MM. We are grateful to the Luminescence and Gamma Spectrometry Laboratory at the University of São Paulo for access to optically stimulated luminescence dating facilities. We thank EMBRAPA-Pantanal for facilitating fieldwork. Dr. Fabiano Pupim (USP) and Dr. Aguinaldo Silva (UFMS) are gratefully acknowledged for their collaboration. We thank Dr. Karlyn Westover for assistance with constrained cluster analyses of the diatom data. The authors appreciate comments by the reviewers on an early version of the manuscript.

References

  1. Ab’Sáber, A. N., 1988. O Pantanal Mato-grossense e a teoria dos refúgios. Revista Brasileira de Geografia 50: 9–57.Google Scholar
  2. Aitken, M. J., 1985. Thermoluminescence Dating. Academic Press, London.Google Scholar
  3. Alho, C. J. R., 2008. Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation. Brazilian Journal of Biology 68: 957–966.CrossRefGoogle Scholar
  4. Almeida, T. I. R., A. C. Paranhos Filho, M. M. da Rocha, G. F. De Souza, J. B. Sigolo & R. A. Bertolo, 2009. As diferenciadas altitudes do nível da água dos lagos salino-alcalinos e hipossalinos do Pantanal da Nhecolândia: um indicativo de funcionamento do mega sistema lacustre. Geociências 28: 401–415.Google Scholar
  5. Almeida, T. I. R., I. Karmann, A. C. Paranhos Filho, J. B. Sígolo & R. A. Bertolo, 2010. Os diferentes graus de isolamento da água subterrânea como origem de sua variabilidade: Evidências isotópicas, hidroquímicas e da variação sazonal do nível da água no pantanal da Nhecolândia. Geologia USP 10: 37–47.Google Scholar
  6. Assine, M. L., 2005. River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology 70: 357–371.CrossRefGoogle Scholar
  7. Assine, M. L. & P. C. Soares, 2004. Quaternary of the Pantanal, west-central Brazil. Quaternary International 114: 23–34.CrossRefGoogle Scholar
  8. Assine, M. L., E. R. Merino, F. N. Pupim, L. V. Warren, R. L. Guerreiro & M. M. McGlue, 2015a. Geology and geomorphology of the Pantanal basin. In Bergier, I. & M. L. Assine (eds), Dynamics of the Pantanal Wetland in South America. Springer, Cham: 23–50.CrossRefGoogle Scholar
  9. Assine, M. L., E. R. Merino, F. N. do Pupim, H. A. de Macedo & M. G. M. dos Santos, 2015b. The quaternary alluvial systems tract of the Pantanal Basin, Brazil. Brazilian Journal of Geology 45: 475–489.CrossRefGoogle Scholar
  10. Assine, M. L., H. A. Macedo, J. C. Stevaux, I. Bergier, C. R. Padovani & A. Silva, 2015c. Avulsive rivers in the hydrology of the Pantanal wetland. In Bergier, I. & M. L. Assine (eds), Dynamics of the Pantanal Wetland in South America. Springer, Cham: 83–110.CrossRefGoogle Scholar
  11. Barbiéro, L., A. R. Filho, S. A. C. Furquim, S. Furian, A. Y. Sakamoto, V. Vallès, R. C. Graham, M. Fort, R. P. D. Ferreira & J. P. Queiroz Neto, 2008. Soil morphological control on saline and freshwater lake hydrogeochemistry in the Pantanal of Nhecolândia, Brazil. Geoderma 148: 91–106.CrossRefGoogle Scholar
  12. Barbiéro, L., J. P. Queiroz Neto, G. Ciornei, A. Y. Sakamoto, B. Capellari, E. Fernandes & V. Valles, 2002. Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes. Wetlands 22: 528–540.CrossRefGoogle Scholar
  13. Barbiéro, L., S. A. C. Furquim, V. Vallès, S. Furian, A. Y. Sakamoto, A. Filho & M. Fort, 2007. Natural arsenic in groundwater and alkaline lakes at the upper Paraguay basin, Pantanal, Brazil. Arsenic in Soil and Groundwater Environment 9: 101–126.Google Scholar
  14. Bastviken, D., A. L. Santoro, H. Marotta, L. Q. Pinho, D. F. Calheiros, P. Crill & A. Enrich-Prast, 2010. Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environmental Science & Technology 44: 5450–5455.CrossRefGoogle Scholar
  15. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 3., Terrestrial, Algal, and Siliceous Indicators Kluwer Academic Publishers, Dordrecht: 155–202.CrossRefGoogle Scholar
  16. Bergier, I., A. Krusche & F. Guérin, 2014. Alkaline lake dynamics in the Nhecolândia Landscape. In Bergier, I. & M. L. Assine (eds), Dynamics of the Pantanal Wetland in South America. Springer International Publishing, Cham: 145–161.CrossRefGoogle Scholar
  17. Bertaux, J., F. Sondag, R. Santos, F. Soubiès, C. Causse, V. Plagnes, F. Le Cornec & A. Seidel, 2002. Paleoclimatic record of speleothems in a tropical region: study of laminated sequences from a Holocene stalagmite in Central-West Brazil. Quaternary International 89: 3–16.CrossRefGoogle Scholar
  18. Blaauw, M. & A. Cristen, 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6: 457–474.Google Scholar
  19. Bonetto, A. A. & I. E. de Drago, 1966. Nuevos aportes al conocimiento de las esponjas argentinas. Physis 26: 129–140.Google Scholar
  20. Braun, E. W., 1977. Cone aluvial do Taquari, unidade geomórfica marcante da planície quaternária do Pantanal. Revista Brasileira de Geografia 39: 164–180.Google Scholar
  21. Buller, L. S., E. Ortega, I. Bergier, J. M. Mesa-Pérez, S. M. Salis & C. A. Luengo, 2015. Sustainability assessment of water hyacinth fast pyrolysis in the Upper Paraguay River basin, Brazil. Science of the Total Environment 532: 281–291.CrossRefPubMedGoogle Scholar
  22. Clapperton, C. M., 1993. Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101: 189–208.CrossRefGoogle Scholar
  23. Colinvaux, P. A., P. E. De Oliveira & M. B. Bush, 2000. Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19: 141–169.CrossRefGoogle Scholar
  24. Costa, M. P. F., K. H. Telmer, T. L. Evans, T. I. R. Almeida & M. T. Diakun, 2015. The lakes of the Pantanal: inventory, distribution, geochemistry, and surrounding landscape. Wetlands Ecology and Management 23: 19–39.CrossRefGoogle Scholar
  25. De Deckker, P., 1983. Australian salt lakes their history, chemistry, and biota a review. Hydrobiologia 105: 231–244.CrossRefGoogle Scholar
  26. de Oliveira, M. D. & D. F. Calheiros, 2000. Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hydrobiologia 427: 101–112.CrossRefGoogle Scholar
  27. Debrot, A. O. & R. W. M. Van Soest, 2001. First records of the freshwater sponges Corvoheteromeyenia heterosclera and Spongilla alba (Porifera: Spongillidae) from Curaçao, with species descriptions and data from transplantation experiments. Caribbean Journal of Science 37: 88–94.Google Scholar
  28. Evans, T. L., & M. P. F. Costa, 2013. Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery, Vol. 128. Remote Sensing of Environment Elsevier Inc, Lanham: 118–137.Google Scholar
  29. Ezcurra de Drago, I., 1974. Las especies sudamericanas de Corvomeyenia Weltner (Porifera, Spongillidae). Physis 33: 233–240.Google Scholar
  30. Ezcurra de Drago, I., 1979. Un nuevo genero sudamericano de esponjas: Corvoheteromeyenia gen. nov. (Porifera:Spongillidae). Neotropica 25: 109–118.Google Scholar
  31. Fornace, K. L., B. S. Whitney, V. Galy, K. A. Hughen & F. E. Mayle, 2016. Late Quaternary environmental change in the interior South American tropics: new insight from leaf wax stable isotopes. Earth and Planetary Science Letters 438: 75–85.CrossRefGoogle Scholar
  32. Fritz, S. C., S. Juggins & R. W. Batterbee, 1993. Diatom assemblages and ionic characterization of lakes of the northern great plains, North America – a tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Sciences 50: 1844–1856.CrossRefGoogle Scholar
  33. Furian, S., E. R. C. Martins, T. M. Parizotto, A. T. Rezende-Filho, R. L. Victoria & L. Barbiéro, 2013. Chemical diversity and spatial variability in myriad lakes in Nhecolândia in the Pantanal wetlands of Brazil. Limnology and Oceanography 58: 2249–2261.CrossRefGoogle Scholar
  34. Furquim, S. A. C., R. C. Graham, L. Barbiéro, J. P. Queiroz Neto & P. Vidal-Torrado, 2010. Soil mineral genesis and distribution in a saline lake landscape of the Pantanal Wetland, Brazil. Geoderma 154: 518–528.CrossRefGoogle Scholar
  35. Girard, P., I. Fantin-Cruz, S. M. L. De Oliveira & S. K. Hamilton, 2010. Small-scale spatial variation of inundation dynamics in a floodplain of the Pantanal (Brazil). Hydrobiologia 638: 223–233.CrossRefGoogle Scholar
  36. Guerreiro, R. L., J. C. Stevaux, M. Parolin & M. L. Assine, 2013. Late Pleistocene and Holocene paleoenvironments in ponds and alluvial sediments of Upper Paraná River, Brazil. Revista Brasileira de Paleontologia 16: 39–46.CrossRefGoogle Scholar
  37. Hamilton, S. K., S. J. Sippel & J. M. Melack, 1996. Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Archiv für Hydrobiologie 137: 1–23.Google Scholar
  38. Hogg, A., Q. Hua, P. G. Blackwell, M. Niu, C. E. Buck, T. P. Guilderson, T. J. Heaton, J. G. Palmer, P. J. Reimer, R. W. Reimer, C. S. M. Turney & S. R. H. Zimmerman, 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 Years cal BP. Radiocarbon 55: 1889–1903.CrossRefGoogle Scholar
  39. Houk, V., R. Klee & H. Tanaka, 2010. Atlas of freshwater centric diatoms with a brief key and descriptions Part III. Stephanodiscaceae A: Cyclotella, Tertiarius, Discostella. Fottea 10(Supplement): 1–498.Google Scholar
  40. Hua, Q., M. Barbetti & A. Z. Rakoeski, 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55: 2059–2072.CrossRefGoogle Scholar
  41. Ioris, A. A. R., C. T. Irigaray & P. Girard, 2014. Institutional responses to climate change: opportunities and barriers for adaptation in the Pantanal and the Upper Paraguay River Basin. Climatic Change 127: 139–151.CrossRefGoogle Scholar
  42. Juggins, S., 2016. Rioja: Analysis of Quaternary Science Data, version 0.9-9, https://CRAN.R-project.org/package=rioja.
  43. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  44. Junk, W. J., C. N. da Cunha, K. M. Wantzen, P. Petermann, C. Strüssmann, M. I. Marques & J. Adis, 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences 68: 278–309.CrossRefGoogle Scholar
  45. Junk, W. J., M. T. F. Piedade, R. Lourival, F. Wittmann, P. Kandus, L. D. Lacerda, R. L. Bozelli, F. A. Esteves, C. N. da Cunha, L. Maltchik, J. Schöngart, Y. Schaeffer-Novelli & A. A. Agostinho, 2014. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems 24: 5–22.CrossRefGoogle Scholar
  46. Klammer, G., 1982. Die Paläowüste des Pantanal von Mato Grosso und die pleistozäne Klimageschichte der brasilianischen Randtropen. Zeitschrift für Geomorphologie 26: 393–416.Google Scholar
  47. Kuerten, S., M. Parolin, M. L. Assine & M. M. McGlue, 2013. Sponge spicules indicate Holocene environmental changes on the Nabileque River floodplain, southern Pantanal, Brazil. Journal of Paleolimnology 49: 171–183.CrossRefGoogle Scholar
  48. Machado, V. D. E. S., C. Volkmer-ribeiro & R. Iannuzzi, 2012. Inventary of the sponge fauna of the Cemitério Paleolake, Catalão, Goiás, Brazil. Anais da Academia Brasileira de Ciências 84: 17–34.CrossRefGoogle Scholar
  49. Malone, C. F. S., K. R. D. S. Santos, M. J. Neto & A. Y. Sakamoto, 2007. Gêneros de Algas no Plâncton de Lagoas Salinas Situadas na Fazenda Nhumirim, Pantanal da Nhecolândia, MS. Revista Brasileira de Biociências 5: 588–590.Google Scholar
  50. Malone, C. F. S., K. R. S. de Santos & C. L. Sant’Anna, 2012. Algas e cianobactérias de ambientes extremos do Pantanal brasileiro. Oecologia Australis 16: 745–755.CrossRefGoogle Scholar
  51. Manconi, R. & R. Pronzato, 2002. Suborder Spongillina subord. nov.: freshwater sponges. Systema Porifera: A Guide to the Classification of Sponges 1: 921–1021.CrossRefGoogle Scholar
  52. Manconi, R. & R. Pronzato, 2007. Gemmules as a key structure for the adaptive radiation of freshwater sponges: a morpho-functional and biogeographical study. Museu Nacional Serie Livros 28: 61–77.Google Scholar
  53. Marani, L. & P. C. Alvala, 2007. Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment 41: 1627–1633.CrossRefGoogle Scholar
  54. Marengo, J. A., L. M. Alves & R. R. Torres, 2016. Regional climate change scenarios in the Brazilian Pantanal watershed. Climate Research 68(2–3): 201–213.CrossRefGoogle Scholar
  55. Mayle, F. E., R. Burbridge & T. J. Killeen, 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290: 2291–2294.CrossRefPubMedGoogle Scholar
  56. McGlue, M. M., A. Silva, F. A. Corradini, H. Zani, M. A. Trees, G. S. Ellis, M. Parolin, P. W. Swarzenski, A. S. Cohen & M. L. Assine, 2011. Limnogeology in Brazil’s “forgotten wilderness”: a synthesis from the large floodplain lakes of the Pantanal. Journal of Paleolimnology 46: 273–289.CrossRefGoogle Scholar
  57. McGlue, M. M., A. Silva, H. Zani, F. A. Corradini, M. Parolin, E. J. Abel, A. S. Cohen, M. L. Assine, G. S. Ellis, M. Trees, S. Kuerten, F. D. S. Gradella & G. G. Rasbold, 2012. Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil). Quaternary Research 78: 285–294.CrossRefGoogle Scholar
  58. McGlue, M. M., A. Silva, M. L. Assine, J. Stevaux & F. Pupim, 2015. Paleolimnology in the Pantanal: using lake sediments to track quaternary environmental change in the world’s largest tropical wetland. In Bergier, I. & M. L. Assine (eds), Dynamics of the Pantanal Wetland in South America. Springer, Switzerland: 51–81.CrossRefGoogle Scholar
  59. McGlue, M. M., R. L. Guerreiro, I. Bergier, A. Silva, F. N. Pupim, V. Oberc & M. L. Assine, 2017. Holocene stratigraphic evolution of saline lakes in Nhecolândia, southern Pantanal wetlands (Brazil). Quaternary Research.  https://doi.org/10.1017/qua.2017.57.Google Scholar
  60. Metzeltin, D. & H. Lange-Bertalot, 2007. Tropical diatoms of South America II. Special remarks on biogeographic disjunction. Iconographia Diatomologica 18: 1–877.Google Scholar
  61. Morales, E. A., C. E. Wetzel, S. F. Rivera, M. H. Novais, L. Hoffmann & L. Ector, 2014. Craticula strelnikoviana sp. nov. and Craticula guaykuruorum sp. nov. (Bacillariophyta) from South American saline lakes. Nova Hedwigia 143: 223–237.Google Scholar
  62. Mourão, G. H., I. H. Ishii & Z. Campos, 1988. Alguns fatores limnológicos relacionados com a ictiofauna de baías e salinas do Pantanal da Nhecolândia, Mato Grosso do Sul, Brasil. Acta Limnologica Brasiliensia 11: 181–198.Google Scholar
  63. Murray, A. S. & A. G. Wintle, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377–381.CrossRefGoogle Scholar
  64. Novello, V. F., M. Vuille, F. W. Cruz, N. M. Stríkis, M. S. de Paula, R. L. Edwards, H. Cheng, I. Karmann, P. F. Jaqueto, R. I. F. Trindade, G. A. Hartmann & J. S. Moquet, 2016. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites. Scientific Reports 6: 24762.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Novello, V. F., F. W. Cruz, M. Vuille, N. M. Stríkis, R. L. Edwards, H. Cheng, S. Emerick, M. S. de Paula, X. Li, E. de S. Barreto, I. Karmann & R. V. Santos, 2017. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Scientific Reports 7: 44267Google Scholar
  66. Nunes da Cunha, C. & W. J. Junk, 2001. Distribution of woody plant communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. International Journal of Ecology and Environmental Sciences 27: 63–70.Google Scholar
  67. Parolin, M., C. Volkmer-Ribeiro & J. C. Stevaux, 2007. Sponge spicules in peaty sediments as paleoenvironmental indicators of the Holocene in the Upper Paraná River, Brazil. Revista Brasileira de Paleontologia 10: 17–26.CrossRefGoogle Scholar
  68. Parolin, M., C. Volkmer-Ribeiro & J. C. Stevaux, 2008. Use of spongofacies as a proxy for river-lake paleohydrology in Quaternary deposits of central-western Brazil. Revista Brasileira de Paleontologia 11: 187–198.CrossRefGoogle Scholar
  69. Por, F. D., 1995. The Pantanal of Mato Grosso (Brazil): World’s Largest Wetlands. Springer, Dordrecht.CrossRefGoogle Scholar
  70. Pott, A. & J. S. V. Silva, 2015. Terrestrial and aquatic vegetation diversity of the Pantanal wetland. In Bergier, I. & M. L. Assine (eds), Dynamics of the Pantanal Wetland in South America. Springer, Switzerland: 111–131.Google Scholar
  71. Racek, A. A., 1969. The freshwater sponges of australia (Porifera: Spongillidae). Australian Journal of Marine and Freshwater Research 20: 267–310.CrossRefGoogle Scholar
  72. Racek, A. A., 1974. The waters of Merom: a study of lake Huleh. IV Spicular remains of fresh-water sponges (Porifera). Archiv für Hydrobiologie 74: 137–158.Google Scholar
  73. Salis, S. M., C. R. Lehn, P. P. Mattos, I. Bergier & S. M. A. Crispim, 2014. Root behavior of savanna species in Brazil’s Pantanal wetland. Global Ecology and Conservation 2: 378–384.CrossRefGoogle Scholar
  74. de Santos, K. R. S. & C. L. Sant’anna, 2010. Cianobactérias de diferentes tipos de lagoas (“salina”, “salitrada” e “baía”) representativas do Pantanal da Nhecolândia, MS, Brasil. Brazilian Journal of Botany 33: 61–83.Google Scholar
  75. de Santos, K. R. S., A. C. R. da Rocha & C. L. Sant’Anna, 2012. Diatoms from shallow lakes in the Pantanal of Nhecolândia, Brazilian wetland. Oecologia Australis 16: 756–769.CrossRefGoogle Scholar
  76. Sawakuchi, A. O., V. R. Mendes, F. do N. Pupim, T. D. Mineli, L. M. A. L. Ribeiro, A. Zular, C. C. F. Guedes, P. C. F. Giannini, L. Nogueira, W. Sallun Filho & M. L. Assine, 2016. Optically stimulated luminescence and isothermal thermoluminescence dating of high sensitivity and well bleached quartz from Brazilian sediments: from Late Holocene to beyond the Quaternary? Brazilian Journal of Geology 46: 209–226.Google Scholar
  77. Schnurrenberger, D., J. Russell & K. Kelts, 2003. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29: 141–154.CrossRefGoogle Scholar
  78. Seidl, A. F. & A. S. Moraes, 2000. Global valuation of ecosystem services: application to the Pantanal da Nhecolandia, Brazil. Ecological Economics 33: 1–6.Google Scholar
  79. Shindell, D. T., 2004. Impacts of climate change on methane emissions from wetlands. Geophysical Research Letters 31: L21202.Google Scholar
  80. Soares, A. P., P. C. Soares & M. L. Assine, 2003. Areiais e lagoas do Pantanal, Brasil: herança paleoclimática? Revista Brasielira de Geociencias 33: 211–224.Google Scholar
  81. Tapia, P. M., S. C. Fritz, P. A. Baker, G. O. Seltzer & R. B. Dunbar, 2003. A late Quaternary diatom record of tropical climate history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 194: 139–164.CrossRefGoogle Scholar
  82. Tavares, M. C. M., V. R. Cecília & R. de Rosa-Barbosa, 2003. Primeiro registro de Corvoheteromeyenia australis (Bonetto & Ezcurra de Drago) para o Brasil com chave taxonômica para os poríferos do Parque Estadual Delta do Jacuí, Rio Grande do Sul, Brasil. Revista Brasileira de Zoologia 20: 169–182.Google Scholar
  83. Tremarin, P. I., T. A. V. Ludwig & L. C. Torgan, 2014. Four new Aulacoseira species (Coscinodiscophyceae) from Matogrossense Pantanal, Brazil. Diatom Research 29: 183–199.CrossRefGoogle Scholar
  84. Tricart, J., 1982. El pantanal: un ejemplo del impacto geomorfologico sobre el ambiente. Informativo Geografico Chile 29: 81–97.Google Scholar
  85. Van Soest, R. W. M., N. Boury-Esnault, J. N. A. Hooper, K. Rützler, N. J. de Voogd, B. Alvarez, E. Hajdu, A. B. Pisera, R. Manconi, C. Schönberg, M. Klautau, B. Picton, M. Kelly, J. Vacelet, M. Dohrmann, M. C. Díaz, P. Cárdenas, J. L. Carballo, P. Rios & R. Downey, 2017. World Porifera database. Accessed at http://www.marinespecies.org/porifera on 2017–10–02.
  86. Valverde, O., 1972. Fundamentos geográficos do planejamento do Município de Corumbá. Revista Brasileira de Geografia 34: 49–144.Google Scholar
  87. Volkmer-Ribeiro, C., 1992. The freshwater sponges in some peat-bog ponds in Brazil. Amazoniana 12: 317–335.Google Scholar
  88. Volkmer-Ribeiro, C. & V. D. S. Machado, 2007. Freshwater sponges (Porifera, Demospongiae) indicators of some coastal habitats in South America: redescriptions and key to identification. Iheringia. Série Zoologia 97: 157–167.CrossRefGoogle Scholar
  89. Volkmer-Ribeiro, C. & J. F. M. Motta, 1995. Esponjas formadas de espongilitos em lagoas do Triangulo Mineiro e adjascências, com indicação da preservação de habitat. Biociências 3: 145–168.Google Scholar
  90. Volkmer-Ribeiro, C. & M. Parolin, 2010. As esponjas In Parolin, M., C. Volkmer-Ribeiro, & J. A. Leandrini (eds), Abordagem ambiental interdisciplinar em bacias hidrográficas no Estado do Paraná. Editora da Fecilcam, Campo Mourão-PR: 105–130.Google Scholar
  91. Volkmer-Ribeiro, C. & S. M. Pauls, 2000. Esponjas de Agua Dulce (Porifera, Demospongiae) de Venezuela. Acta Biologica Venezuelica Cararas 20: 1–28.Google Scholar
  92. Volkmer-Ribeiro, C. & B. Turcq, 1996. SEM analysis of silicious spicules of a freshwater sponge indicate paleoenvironmental changes. Acta Microscópica 5: 186–187.Google Scholar
  93. Volkmer-Ribeiro, C., J. F. M. Motta & V. L. M. Callegaro, 1998. Taxonomy and distribution of Brazilian spongillites. In Watanabe, Y. & N. Fusetani (eds), Sponge Sciences: Multidisciplinary Perspectives. Springer, Tokyo: 271–278.Google Scholar
  94. Volkmer-Ribeiro, C., M. M. F. Correia, S. L. A. Brenha & M. A. Mendonça, 1999. Freshwater sponges from a neotropical sand dune area. Memoirs of the Queensland Museum 44: 643–649.Google Scholar
  95. Volkmer-Ribeiro, C., D. M. Marques, R. De Rosa-Bar-bosa & V. S. Machado, 2004. Sponge spicules in sediments indicate evolution of coastal freshwater bodies. Journal of Coastal Research 39: 469–472.Google Scholar
  96. Volkmer-Ribeiro, C., I. E. de Drago & M. Parolin, 2007. Spicules of the freshwater sponge Ephydatia facunda indicate lagoonal paleoenvironment at the pampas of Buenos Aires Province, Argentina. Journal of Coastal Research 50: 449–452.Google Scholar
  97. Whitney, B. S., F. E. Mayle, S. W. Punyasena, K. A. Fitzpatrick, M. J. Burn, R. Guillen, E. Chavez, D. Mann, R. T. Pennington & S. E. Metcalfe, 2011. A 45kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307: 177–192.CrossRefGoogle Scholar
  98. Zani, H., M. L. Assine & M. M. McGlue, 2012. Remote sensing analysis of depositional landforms in alluvial settings: method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology 161–162: 82–92.CrossRefGoogle Scholar
  99. Zhou, J. & K. M. Lau, 1998. Does a monsoon climate exist over South America? Journal of Climate 11: 1020–1040.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Renato Lada Guerreiro
    • 1
  • Michael M. McGlue
    • 2
  • Jeffery R. Stone
    • 3
  • Ivan Bergier
    • 4
  • Mauro Parolin
    • 5
  • Silane A. F. da Silva Caminha
    • 6
  • Lucas V. Warren
    • 7
  • Mario L. Assine
    • 7
  1. 1.Instituto Federal do Paraná – Campus Assis ChateaubriandParanáBrazil
  2. 2.Department of Earth and Environmental SciencesUniversity of KentuckyLexingtonUSA
  3. 3.Department of Earth and Environmental SystemsIndiana State UniversityTerre HauteUSA
  4. 4.Laboratory of Biomass ConversionEmbrapa Pantanal, CPAPCorumbáBrazil
  5. 5.Laboratório de Estudos Paleoambientais da Fecilcam (Lepafe)Faculdade Estadual de Ciências e Letras de Campo MourãoParanáBrazil
  6. 6.Laboratório de Palinologia de Mato Grosso, Faculdade de GeociênciasUniversidade Federal de Mato GrossoCuiabáBrazil
  7. 7.Instituto de Geociências e Ciências ExatasUnesp - Universidade Estadual PaulistaRio ClaroBrazil

Personalised recommendations