Skip to main content

Advertisement

Log in

Influence of environmental factors and biogenic habitats on intertidal meiofauna

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study investigated the influence of physical and chemical conditions and biotic factors on the distribution and diversity of meiofauna in intertidal zone along a geographical gradient. At 11 sites along the Italian coast, we studied the concurring role of environmental variables, trophic resources and the presence of habitat-forming species (macroalgae vs. mussels) in controlling the meiofaunal communities. The increase of water temperature combined with local thermal conditions was associated with a decrease in nematodes and copepods, with a consequent decrease in meiofaunal abundance towards the south. However, the increase in salinity, as geographical gradient decreases, and local thermal conditions favoured the settlement of a greater number of taxa, influencing communities’ composition. The presence of macroalgae or mussels differently influenced the community structure of meiofauna on intertidal substrates and their response to environmental factors. From our results, the presence of macroalgae coverage appeared to reduce the impact of thermal stress on meiofauna and was associated with higher levels of meiofaunal diversity with respect to mussels. This work highlighted the importance of considering the interplay among biotic and abiotic factors, resulting in local combinations of environmental conditions, in order to understand the pattern of diversity and distributions of marine organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Airoldi, L. & M. W. Beck, 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology 45: 345–405.

    Google Scholar 

  • Albuquerque, E. F., A. P. B. Pinto, A. D. Q. Perezn & V. G. Veloso, 2007. Spatial and temporal changes in interstitial meiofauna on a sandy ocean beach of South America. Brazilian Journal of Oceanography 55(2): 121–131.

    Article  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Arroyo, N. L., M. Maldonado, R. Pérez-Portela & J. Benito, 2004. Distribution patterns of meiofauna associated with a sublittoral Laminaria bed in the Cantabrian Sea (north-eastern Atlantic). Marine Biology 144: 231–242.

    Article  Google Scholar 

  • Balsamo, M., G. Albertelli, V. U. Ceccherelli, R. Coccioni, M. A. Colangelo, M. Curini-Galletti, R. Danovaro, R. D’Addabbo, C. De Leonardis, M. Fabiano, F. Frontalini, M. Gallo, C. Gambi, L. Guidi, M. Moreno, A. Pusceddu, R. Sandulli, F. Semprucci, M. A. Todaro & P. Tongiorgi, 2010. Meiofauna of the Adriatic Sea: present knowledge and future perspectives. Chemistry and Ecology 26: 45–63.

    Article  Google Scholar 

  • Beer, T., 1997. Environmental Oceanography. CRC Press, Boca Raton: 402.

    Google Scholar 

  • Benedetti-Cecchi, L., F. Pannacciulli, F. Bulleri, P. S. Moschella, L. Airoldi, G. Relini & F. Cinelli, 2001. Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Marine Ecology Progress Series 214: 137–150.

    Article  Google Scholar 

  • Bianchelli, S., C. Gambi, D. Zeppilli & R. Danovaro, 2010. Metazoan meiofauna in deep-sea canyons and adjacent open slopes: a large-scale comparison with focus on the rare taxa. Deep Sea Research Part I: Oceanographic Research Papers 57(3): 420–433.

    Article  Google Scholar 

  • Bianchelli, S., A. Pusceddu, S. Canese, S. Greco & R. Danovaro, 2013. High meiofaunal and nematodes diversity around mesophotic coral oases in the Mediterranean Sea. PLoS ONE 8(6): e66553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrows, M. T., R. Harvey & L. Robb, 2008. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Marine Ecology Progress Series 353: 1–12.

    Article  Google Scholar 

  • Brierley, A. S. & M. J. Kingsford, 2009. Impacts of climate change on marine organisms and ecosystems. Current Biology 19: 602–614.

    Article  Google Scholar 

  • Bulleri, F., L. Benedetti-Cecchi, S. Acunto, F. Cinelli & S. J. Hawkins, 2002. The influence of canopy algae 0 on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. Journal of Experimental Marine Biology and Ecology 267: 89–106.

    Article  Google Scholar 

  • Carugati, L., C. Corinaldesi, A. Dell’Anno & R. Danovaro, 2015. Metagenetic tools for the census of marine meiofaunal biodiversity: an overview. Marine Genomics 24: 11–20.

    Article  PubMed  Google Scholar 

  • Chatterji, A., Z. A. Ansari, J. K. Mishra & A. H. Parulekar, 1995. Seasonality in meiofaunal distribution on a tropical beach at Balramgari, northeast coast of India. Indian Journal of Marine Science 24: 49–55.

    Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Cole, V. J., 2010. Alteration of the configuration of bioengineers affects associated taxa. Marine Ecology Progress Series 416: 127–136.

    Article  Google Scholar 

  • Coll, M., C. Piroddi, J. Steenbeek, K. Kaschner, F. Ben Rais Lasram, J. Aguzzi, E. Ballesteros, C. N. Bianchi, J. Corbera, T. Dailianis, R. Danovaro, M. Estrada, C. Froglia, B. S. Galil, J. M. Gasol, R. Gertwagen, J. Gil, F. Guilhaumon, K. Kesner-Reyes, M. S. Kitsos, A. Koukouras, N. Lampadariou, E. Laxamana, C. M. López-Fé de la Cuadra, H. K. Lotze, D. Martin, D. Mouillot, D. Oro, S. Raicevich, J. Rius-Barile, J. I. Saiz-Salinas, C. San Vicente, S. Somot, J. Templado, X. Turon, D. Vafidis, R. Villanueva & E. Voultsiadou, 2010. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5(8): e11842.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coull, B. C., 1999. Role of meiofauna in estuarine soft-bottom habitats. Australian Journal of Ecology 24: 327–343.

    Article  Google Scholar 

  • Covazzi-Harriague, A. & G. Albertelli, 2007. Environmental factors controlling macrofaunal assemblages on six microtidal beaches of the Ligurian Sea (NW Mediterranean). Estuarine, Coastal and Shelf Science 73(1): 8–16.

    Article  Google Scholar 

  • Covazzi-Harriague, A., C. Misic, I. Valentini, E. Polidori, G. Albertelli & A. Pusceddu, 2013. Meio- and macrofauna communities in three sandy beaches of the northern Adriatic Sea protected by artificial reefs. Chemistry and Ecology 29(2): 181–195.

    Article  CAS  Google Scholar 

  • Crain, C. M., B. S. Halpern, M. W. Beck & C. V. Kappel, 2009. Understanding and managing human threats to the coastal marine environment. Annals of the New York Academy of Sciences 1162(1): 39–62.

    Article  PubMed  Google Scholar 

  • Crowe, T. P., M. Cusson, F. Bulleri, D. Davoult, F. Arenas, R. Aspden, L. Benedetti-Cecchi, S. Bevilacqua, I. Davidson, E. Defew, S. Fraschetti, C. Golléty, J. N. Griffin, K. Herkül, J. Kotta, A. Migné, M. Molis, S. K. Nicol, L. M.-L. J. Noël, I. S. Pinto, N. Valdivia, S. Vaselli & S. R. Jenkins, 2013. Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning. PLoS ONE 8(6): e66238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curini-Galletti, M., T. Artois, V. Delogu, W. H. De Smet, D. Fontaneto, U. Jondelius, F. Leasi, A. Martìnez, I. Meyer-Wachsmuth, K. S. Nilsson, P. Tongiorgi, K. Worsaae & M. A. Todaro, 2012. Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PLoS ONE 7(3): e33801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danovaro, R., 2010. Methods for the Study of Deep-Sea Sediments, Their Functioning and Biodiversity. CRC Press, Boca Raton.

    Google Scholar 

  • Danovaro, R. & S. Fraschetti, 2002. Meiofaunal vertical zonation on rocky-bottoms: comparison with soft-bottom meiofauna. Marine Ecology Progress Series 230: 159–169.

    Article  Google Scholar 

  • Danovaro, R., M. Scopa, C. Gambi & S. Fraschetti, 2007. Trophic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates. Marine Biology 152: 339–350.

    Article  Google Scholar 

  • Danovaro, R., C. Gambi, A. Dell’Anno, C. Corinaldesi, S. Fraschetti, A. Vanreusel, M. Vincs & A. J. Gooday, 2008. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology 18(1): 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Defeo, O. & A. McLachlan, 2013. Global patterns in sandy beach macrofauna: species richness, abundance, biomass and body size. Geomorphology 199: 106–114.

    Article  Google Scholar 

  • De Zio, S. & P. Grimaldi, 1966. Ecological aspects of Tardigrada distribution in South Adriatic beaches. Veröff. Institute Meeresforsch. Bremerhaven 2: 87–94.

    Google Scholar 

  • Dittmann, S., 1990. Mussel beds – amensalism or amelioration for intertidal fauna? Helgoländer Meeresuntersuchungen 44(3): 335.

    Article  Google Scholar 

  • Du, Y., K. Xu, A. Warren, Y. Lei & R. Dai, 2012. Benthic ciliate and meiofaunal communities in two contrasting habitats of an intertidal estuarine wetland. Journal of Sea Research 70: 50–63.

    Article  Google Scholar 

  • Frame, K., G. Hunt & K. Roy, 2007. Intertidal meiofaunal biodiversity with respect to different algal habitats: a test using phytal ostracodes from Southern California. Hydrobiologia 586: 331–342.

    Article  Google Scholar 

  • Gartner, A., F. Tuya, P. S. Lavery & K. McMahon, 2013. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. Journal of Experimental Marine Biology and Ecology 439: 143–151.

    Article  Google Scholar 

  • Gaston, K. J., 2000. Global patterns in biodiversity. Nature 405(6783): 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Gheskiere, T., M. Vincx, B. Urban-Malinga, C. Rossano, F. Scapini & S. Degraer, 2005. Nematodes from wave-dominated sandy beaches: diversity, zonation patterns and testing of the isocommunities concept. Estuarine Coastal Shelf Science 62: 365–375.

    Article  Google Scholar 

  • Gibbons, M. J., 1988a. The impact of sediment accumulations, relative habitat complexity and elevation on rocky shore meiofauna. Journal of Experimental Marine Biology and Ecology 122: 225–241.

    Article  Google Scholar 

  • Gibbons, M. J., 1988b. The impact of wave exposure on the meiofauna of Gelidium pristoides (Turner) Kuetzing (Gelidiales: Rhodophyta). Estuarine Coastal Shelf Science 27: 581–593.

    Article  Google Scholar 

  • Giere, O., 2009. Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments, 2nd ed. Springer, Berlin.

    Google Scholar 

  • Gobin, J. F. & R. M. Warwick, 2006. Geographical variation in species diversity: a comparison of marine polychaetes and nematodes. Journal of Experimental Marine Biology and Ecology 330(1): 234–244.

    Article  Google Scholar 

  • Heip, C., M. Vincx & G. Vranken, 1985. The ecology of marine nematodes. Oceanography and Marine Biology 23: 399–489.

    Google Scholar 

  • Helmuth, B., 1998. Intertidal mussel microclimates: predicting the body temperature of a sessile invertebrate. Ecological Monographs 68: 51–74.

    Article  Google Scholar 

  • Helmuth, B., 1999. Thermal biology of rocky intertidal mussels: quantifying body temperatures using climatological data. Ecology 80(1): 15–34.

    Article  Google Scholar 

  • Helmuth, B., L. Yamane, K. J. Mach, S. Chhotray, P. Levin & S. Woodin, 2008. All climate change is local: understanding and predicting the effects of climate change from an organism’s point of view. Stanford Journal of Law, Science & Policy 2: 18–35.

    Google Scholar 

  • Helmuth, B., E. Carrington & J. G. Kingsolver, 2005. Biophysics, physiological ecology, and climate change: does mechanism matter? Annual Review of Physiology 67: 177–201.

    Article  CAS  PubMed  Google Scholar 

  • Hulings, N. C. & J. S. Gray, 1976. Physical factors controlling abundance of meiofauna on tidal and atidal beaches. Marine Biology 34: 77–83.

    Article  Google Scholar 

  • Ingole, B. S. & A. H. Parulekar, 1998. Role of salinity in structuring the intertidal meiofauna of a tropical estuarine beach: field evidence. Indian Journal of Marine Sciences 27: 356–361.

    CAS  Google Scholar 

  • Jansson, B. O., 1968. Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia 5: 1–71.

    Article  Google Scholar 

  • Kearney, M., S. J. Simpson, D. Raubenheimer & B. Helmuth, 2010. Modelling the ecological niche from functional traits. Philosophical Transitional Royal Society B 365: 3469–3483.

    Article  Google Scholar 

  • Kostylev, V. E., J. Erlandsson, M. J. Ming & G. A. Williams, 2005. The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecological Complexity 2: 272–286.

    Article  Google Scholar 

  • Kotwicki, L., M. Szymelfenig, M. De Troch, B. Urban-Malinga, T. Gheskiere & J. M. Weslawski, 2005. Latitudinal biodiversity patterns of meiofauna from sandy littoral beaches. Biodiversity and Conservation 14: 461–474.

    Article  Google Scholar 

  • Kotwicki, L., A. Deidun, K. Grzelak & K. Gianni, 2014. A preliminary comparative assessment of the meiofaunal communities of Maltese pocket sandy beaches. Estuarine, Coastal and Shelf Science 150: 111–119.

    Article  Google Scholar 

  • Kroeker, K. J., E. Sanford, J. M. Rose, C. A. Blanchette, F. Chan, F. P. Chavez, B. Gaylord, B. Helmuth, T. M. Hill, G. E. Hofmann, M. A. McManus, B. A. Menge, K. J. Nielsen, P. T. Raimondi, A. D. Russell & L. Washburn, 2016. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecology Letters 19: 771–779.

    Article  PubMed  Google Scholar 

  • Lima, G. M. & J. A. Pechenik, 1985. The influence of temperature on growth rate and length of larval life of the gastropod, Crepidula plana Say. Journal of Experimental Marine Biology and Ecology 90(1): 55–71.

    Article  Google Scholar 

  • Logan, D., K. A. Townsend, K. Townsend & I. R. Tibbetts, 2008. Meiofauna sediment relations in leeward slope turf algae of Heron Island reef. Hydrobiologia 610: 269–276.

    Article  Google Scholar 

  • Lorenzen, C. & J. Jeffrey, 1980. Determination of chlorophyll in seawater. Unesco Technical Papers in Marine Sciences 35(1): 1–20.

    Google Scholar 

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.

    Article  Google Scholar 

  • Menge, B. A., C. Blanchette, P. Raimondi, T. Freidenburg, S. Gaines, J. Lubchenco, D. Lohse, G. Hudson, M. Foley & J. Pamplin, 2004. Species interaction strength: testing model predictions along an upwelling gradient. Ecological Monographs 74(4): 663–684.

    Article  Google Scholar 

  • Norkko, A., J. E. Hewitt, S. F. Thrush & G. A. Funnell, 2001. Benthic-pelagic coupling and suspension-feeding bivalves: linking site-specific sediment flux and biodeposition to benthic community structure. Limnology and Oceanography 46: 2067–2072.

    Article  Google Scholar 

  • Norling, P. & N. Kautsky, 2007. Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Marine Ecology Progress Series 351: 163–175.

    Article  Google Scholar 

  • Norling, P. & N. Kautsky, 2008. Patches of the mussel Mytilus sp. are islands of high biodiversity in subtidal sediment habitats in the Baltic Sea. Aquatic Biology 4: 75–87.

    Article  Google Scholar 

  • Papageorgiou, N., M. Moreno, V. Marin, S. Baiardo, C. Arvanitidis, M. Fabiano & A. Eleftheriou, 2007. Interrelationships of bacteria, meiofauna and macrofauna in a Mediterranean sedimentary beach (Maremma Park, NW Italy). Helgoland Marine Research 61: 31–42.

    Article  Google Scholar 

  • Pusceddu, A., A. Dell’Anno, E. Manini, M. Fabiano, G. Sarà & R. Danovaro, 2003. Enzymatically hydrolysable protein and carbohydrate sedimentary pools as indicators of the trophic state of ‘detritus sink’ systems: a case study in a Mediterranean coastal lagoon. Estuaries 26: 641–650.

    Article  CAS  Google Scholar 

  • Pusceddu, A., S. Bianchelli, M. Canals, X. Durrieu De Madron, S. Heussner, V. Lykousis, H. de Stigter, F. Trincardi & R. Danovaro, 2010. Organic matter in sediments of canyons and open slopes along European continental margins. Deep-Sea Research I 57: 441–457.

    Article  CAS  Google Scholar 

  • Pusceddu, A., S. Bianchelli, C. Gambi & R. Danovaro, 2011. Assessment of benthic trophic status of marine coastal ecosystems: significance of meiofaunal rare taxa. Estuarine, Coastal and Shelf Science 93(4): 420–430.

    Article  CAS  Google Scholar 

  • Radziejewska, T., C. Fenske, B. Wawrzyniak-Wydrowska, P. Riel, A. Woźniczka & P. Gruszka, 2009. The zebra mussel (Dreissena polymorpha) and the benthic community in a coastal Baltic lagoon another example of enhancement? Marine Ecology 30: 138–150.

    Article  Google Scholar 

  • Reise, K., 2002. Sediment mediated species interactions in coastal waters. Journal of Sea Research 48(2): 127–141.

    Article  Google Scholar 

  • Rodríguez, J. G., M. Lastra & J. López, 2003. Meiofauna distribution along a gradient of sandy beaches in northern Spain. Estuarine, Coastal and Shelf Science 58: 63–69.

    Article  Google Scholar 

  • Rohde, K., 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514–527.

    Article  Google Scholar 

  • Sandulli, R., C. De Leonardis & J. Vanaverbeke, 2010. Meiobenthic communities in the shallow subtidal of three Italian marine protected areas. Italian Journal of Zoology 77(2): 186–196.

    Article  Google Scholar 

  • Sarà, G., M. Kearney & B. Helmuth, 2011. Combining heat-transfer and energy budget models to predict thermal stress in Mediterranean intertidal mussels. Chemistry and Ecology 27: 135–145.

    Article  Google Scholar 

  • Sarà, G., V. Palmeri, A. Rinaldi, V. Montalto & B. Helmuth, 2013. Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a case study with the bivalve Brachidontes pharaonis. Diversity and Distributions 19(10): 1235–1247.

    Article  Google Scholar 

  • Sarà, G., M. Milanese, I. Prusina, A. Sara, D. L. Angel, B. Glamuzina, T. Nitzan, S. Freeman, A. Rinaldi, V. Palmeri, V. Montalto, M. Lo Martire, P. Gianguzza, V. Arizza, S. Lo Brutto, M. De Pirro, B. Helmuth, J. Murray, S. De Cantis & G. A. Williams, 2014. The impact of climate change on Mediterranean intertidal communities: losses in coastal ecosystem integrity and services. Regional environmental change 14(1): 5–17.

    Article  Google Scholar 

  • Semprucci, F., P. Colantoni, C. Sbrocca, G. Baldelli, M. Rocchi & M. Balsamo, 2011. Meiofauna in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). Journal of Marine Systems 87(3): 208–215.

    Article  Google Scholar 

  • Semprucci, F., F. Frontalini, C. Sbrocca, E. A. Du Châtelet, V. Bout-Roumazeilles, R. Coccioni & M. Balsamo, 2015. Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environmental Monitoring and Assessment 187(5): 251.

    Article  CAS  PubMed  Google Scholar 

  • Semprucci, F., C. Sbrocca, G. Baldelli, M. Tramontana & M. Balsamo, 2016. Is meiofauna a good bioindicator of artificial reef impact? Marine Biodiversity. doi:10.1007/s12526-016-0484-3.

    Google Scholar 

  • Soltwedel, T., 2000. Metazoan meiobenthos along continental margins: a review. Progress in Oceanography 46: 59–84.

    Article  Google Scholar 

  • Urban-Malinga, B., T. Gheskiere, S. Degraer, S. Derycke, K. W. Opalinski & T. Moens, 2008. Gradients in biodiversity and macroalgal wrack decomposition rate across a macrotidal, ultradissipative sandy beach. Marine Biology 155: 79–90.

    Article  Google Scholar 

  • Wieser, W. & F. Shiemer, 1977. The ecophysiology of some marine nematodes from Bermuda: seasonal aspect. Journal of Experimental Marine Biology and Ecology 26: 97–106.

    Article  Google Scholar 

  • Yasuhara, M., G. Hunt, G. Dijken, K. R. Arrigo, T. M. Cronin & J. E. Wollenburg, 2012. Patterns and controlling factors of species diversity in the Arctic Ocean. Journal of Biogeography 39(11): 2081–2088.

    Article  Google Scholar 

  • Zeppilli, D., M. Canals & R. Danovaro, 2012. Pockmarks enhance deep-sea benthic biodiversity: a case study in the western Mediterranean Sea. Diversity and Distributions 18(8): 832–846.

    Article  Google Scholar 

  • Zeppilli, D., L. Bongiorni, A. Cattaneo, R. Danovaro & R. S. Santos, 2013. Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments. Deep Sea Research Part II: Topical Studies in Oceanography 98: 87–100.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Italian project TETRIS (Observing, modelling and TEsting synergies and TRade-offs for the adaptive management of multiple Impacts in coastal Systems). We thank Dr. Alessandro Rinaldi and Dr. Chiara Giommi for support during field sampling and Anna Lossman for the fine-tuning of the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Sarà.

Additional information

Handling editor: Pierluigi Viaroli

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ape, F., Sarà, G., Airoldi, L. et al. Influence of environmental factors and biogenic habitats on intertidal meiofauna. Hydrobiologia 807, 349–366 (2018). https://doi.org/10.1007/s10750-017-3410-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3410-1

Keywords

Navigation