Skip to main content

Advertisement

Log in

Evolution in action: allopatry, variable diversity and a stepping-stone model of migration among populations of the freshwater bivalve Triplodon corrugatus from the north-eastern Amazon

  • FRESHWATER BIVALVES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Triplodon corrugatus is a freshwater bivalve (Hyriidae) endemic to the Amazon, Orinoco and Tocantins basins, and the Piriá river. Our understanding of hyriid diversity at, and below, the species level, remains poor. The genetic diversity of T. corrugatus from the Tapajós, Amazon, Tocantins, Irituia and Piriá rivers in the north-eastern Brazilian Amazon was investigated. Except for the Irituia, where a single COII–COI haplotype had been fixed, all the other populations had medium to high haplotype diversities, and all populations had low nucleotide diversities. Pairwise fixation indices indicated that all populations were structured, except for comparisons between the Tapajós and Amazon, and the Amazon and Tocantins rivers, which may be explained by a stepping-stone model of migration. AMOVA detected that 81.28% of the variation was among populations. However, STRUCTURE analyses corroborated only the Piriá river specimens as comprising a distinct population, which is being maintained by allopatry due to the current isolation between the Piriá, and the Amazon and Tocantins basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allendorf, F. W. & G. Luikart, 2007. Conservation and the genetics of populations. Blackwell Publishing, Malden, MA.

    Google Scholar 

  • Beasley, C. R., 2001. The impact of exploitation on freshwater mussels (Bivalvia: Hyriidae) in the Tocantins river, Brazil. Studies on Neotropical Fauna and Environment 36: 159–165.

    Article  Google Scholar 

  • Bonetto, A. A., 1967. La superfamilia Unionacea en la cuenca Amazonica. Atas do Simposio sôbre a Biota Amazônica (Limnologia) 3: 63–82.

    Google Scholar 

  • Combosch, D. J., T. M. Collins, E. A. Glover, D. L. Graf, E. M. Harper, J. M. Healy, G. Y. Kawauchi, S. Lemer, E. McIntyre, E. E. Strong, J. D. Taylor, J. D. Zardus, P. M. Mikkelsen, G. Giribet & R. Bieler, 2017. A family-level tree of life for bivalves based on a sanger-sequencing approach. Molecular Phylogenetics and Evolution 107: 191–208.

    Article  PubMed  Google Scholar 

  • Curole, J. P. & T. D. Kocher, 2002. Ancient sex-specific extension of the cytochrome c oxidase II gene in bivalves and the fidelity of doubly-uniparental inheritance. Molecular Biology and Evolution 19(8): 1323–1328.

    Article  CAS  PubMed  Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl, D. A. & B. M. vonHoldt, 2012. Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.

    Article  Google Scholar 

  • Elderkin, C. L., A. D. Christian, C. C. Vaughn, J. L. Metcalfe-Smith & D. J. Berg, 2007. Population genetics of the freshwater mussel, Amblema plicata (Say 1817) (Bivalvia: Unionidae): evidence of high dispersal and post-glacial colonization. Conservation Genetics 8: 355–372.

    Article  CAS  Google Scholar 

  • Elderkin, C. L., A. D. Christian, C. C. Vaughn, J. L. Metcalfe-Smith & D. J. Berg, 2008. Population genetics and phylogeography of freshwater mussels in North America, Elliptio dilatata and Actinonaias ligamentina (Bivalvia: Unionidae). Molecular Ecology 17: 2149–2163.

    Article  PubMed  Google Scholar 

  • Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L. & H. E. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3): 564–567.

    Article  PubMed  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5): 294–299.

    CAS  PubMed  Google Scholar 

  • Frankham, R., J. D. Ballou & D. A. Briscoe, 2010. Introduction to Conservation Genetics, 2nd ed. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Froufe, E., C. Sobral, A. Teixeira, R. Sousa, S. Varandas, D. C. Aldridge & M. Lopes-Lima, 2014. Genetic diversity of the pan-European freshwater mussel Anodonta anatina (Bivalvia: Unionoida) based on CO1: new phylogenetic insights and implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 24: 561–574.

    Article  Google Scholar 

  • Froufe, E., D. V. Gonçalves, A. Teixeira, R. Sousa, S. Varandas, M. Ghamizi, A. Zieritz & M. Lopes-Lima, 2016a. Who lives where? Molecular and morphometric analyses clarify which Unio species (Unionida, Mollusca) inhabit the southwestern Palearctic. Organisms Diversity & Evolution 16(3): 597–611.

    Article  Google Scholar 

  • Froufe, E., V. Prié, J. Faria, M. Ghamizi, D. V. Gonçalves, M. E. Gürlek, I. Karaouzas, U. Kebapçi, H. Şereflişan, C. Sobral, R. Sousa, A. Teixeira, S. Varandas, S. Zogaris & M. Lopes-Lima, 2016b. Phylogeny, phylogeography, and evolution in the Mediterranean region: news from a freshwater mussel (Potomida, Unionida). Molecular Phylogenetics and Evolution 100: 322–332.

    Article  PubMed  Google Scholar 

  • Fu, Y. X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graf, D. L. & K. S. Cummings, 2006. Palaeoheterodont diversity (Mollusca: Trigonioida + Unionoida): what we know and what we wish we knew about freshwater mussel evolution. Zoological Journal of the Linnean Society 148: 343–394.

    Article  Google Scholar 

  • Graf, D. L. & K. S. Cummings, 2007. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). Journal of Molluscan Studies 73: 291–314.

    Article  Google Scholar 

  • Graf, D. L., A. J. Geneva, J. M. Pfeiffer III & A. D. Chilala, 2014. Phylogenetic analysis of Prisodontopsis Tomlin, 1928 and Mweruella Haas, 1936 (Bivalvia: Unionidae) from Lake Mweru (Congo basin) supports a quaternary radiation in the Zambian Congo. Journal of Molluscan Studies 80: 303–314.

    Article  Google Scholar 

  • Graf, D. L., H. Jones, A. J. Geneve, J. M. Pfeiffer III & M. W. Klunzinger, 2015. Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa. Molecular Phylogenetics and Evolution 85: 1–9.

    Article  PubMed  Google Scholar 

  • Guindon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

    Article  PubMed  Google Scholar 

  • Haas, F., 1969. Superfamília Unionacea. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part N, Mollusca I. Geological Society of America and Kansas University, Lawrence, KS: 411–470.

    Google Scholar 

  • Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

    CAS  Google Scholar 

  • Hasegawa, M., K. Kishino & T. Yano, 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174.

    Article  CAS  PubMed  Google Scholar 

  • Hoorn, C., F. Wesselingh, H. ter Steege, M. A. Bermudez, A. Mora, J. Sevink, I. Sanmartín, A. Sanchez-Meseguer, C. L. Anderson, J. P. Figueiredo, C. Jaramillo, D. Riff, F. R. Negri, H. Hooghiemstra, J. Lundberg, T. Stadler, T. Särkinen & A. Antonelli, 2010. Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, J., A. M. Baker, C. Bartlett, S. Bunn, K. Goudkamp & J. Somerville, 2004. Past and present patterns of connectivity among populations of four cryptic species of freshwater mussels Velesunio spp. (Hyriidae) in Central Australia. Molecular Ecology 13: 3197–3212.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, K. & D. J. Berg, 2017. Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, (Bivalvia: Margaritiferidae), in riverine systems. Global Change Biology 23(1): 94–107.

    Article  PubMed  Google Scholar 

  • Jensen, J. L., A. J. Bohonak & S. T. Kelley, 2005. Isolation by distance, web service. BMC Genetics 6: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, J. W., R. J. Neves & E. M. Hallerman, 2015. Historical demography of freshwater mussels (Bivalvia: Unionidae): genetic evidence for population expansion and contraction during the late Pleistocene and Holocene. Biological Journal of the Linnean Society 114: 376–397.

    Article  Google Scholar 

  • Kimura, M. & G. H. Weiss, 1964. The stepping-stone model of population structure and the decrease of genetic correlation with distance. Genetics 49: 561–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for a comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Lima, M., E. Froufe, V. T. Do, M. Ghamizi, K. E. Mock, Ü. Kebapçı, O. Klishko, S. Kovitvadhi, U. Kovitvadhi, O. S. Paulo, J. M. Pfeiffer III, M. Raley, N. Riccardi, H. Şereflişan, R. Sousa, A. Teixeira, S. Varandas, X. Wu, D. T. Zanatta, A. Zieritz & A. E. Bogan, 2017. Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): defining modern subfamilies and tribes. Molecular Phylogenetics and Evolution 106: 174–191.

    Article  PubMed  Google Scholar 

  • Lundberg, J. G., L. G. Marshall, J. Guerrero, B. Horton, M. C. S. L. Malabarba & F. Wesselingh, 1998. The stage for neotropical fish diversification: a history of tropical South American rivers. Part 1-fossils and geological evidence. In Malabarba, L. R., R. E. Reis, R. P. Vari, Z. M. Lucena & C. A. S. Lucena (eds.), Phylogeny and Classification of Neotropical Fishes. EDIPUCRS, Porto Alegre: 13–48.

    Google Scholar 

  • Mansur, M. C. D. & R. M. Valer, 1992. Moluscos bivalves do rio Uraricoera e rio Branco, Roraima, Brasil. Amazoniana 12(1): 85–100.

    Google Scholar 

  • Mock, K. E., J. C. Brim-Box, J. P. Chong, J. K. Howard, D. A. Nez, D. Wolf & R. S. Gardner, 2010. Genetic structuring in the freshwater mussel Anodonta corresponds with major hydrologic basins in the western United States. Molecular Ecology 19: 569–591.

    Article  PubMed  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Pereira, D., M. C. D. Mansur, L. D. S. Duarte, A. S. Oliveira, D. M. Pimpão, C. T. Callil, C. Ituarte, E. Parada, S. Peredo, G. Darrigran, F. Scarabino, C. Clavijo, G. Lara, I. C. Miyahira, M. T. R. Rodriguez & C. Lasso, 2014. Bivalve distribution in hydrographic regions in South America: historical overview and conservation. Hydrobiologia 735: 15–44.

    Google Scholar 

  • Pfeiffer III, J. M. & D. L. Graf, 2015. Evolution of bilaterally asymmetrical larvae in freshwater mussels (Bivalvia: Unionoida: Unionidae). Zoological Journal of the Linnean Society 175: 307–318.

    Article  Google Scholar 

  • Pimpão, D. M., M. C. Dreher Mansur, P. E. Aydos Bergonci & C. R. Beasley, 2012. Comparative morphometry and morphology of glochidial shells of Amazonian Hyriidae (Mollusca: Bivalvia: Unionida). American Malacological Bulletin 30(1): 73–84.

    Article  Google Scholar 

  • Playford, T. J. & K. F. Walker, 2008. Status of the endangered Glenelg river mussel Hyridella glenelgensis (Unionoida: Hyriidae) in Australia. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 679–691.

    Article  Google Scholar 

  • Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salzburger, W., G. B. Ewing & A. Von Haeseler, 2011. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology 20: 1952–1963.

    Article  PubMed  Google Scholar 

  • Sambrook, J., E. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Santos-Neto, G. C., C. R. Beasley, H. Schneider, D. M. Pimpão, W. R. Hoeh, L. R. L. Simone & C. H. Tagliaro, 2016. Genetic relationships among freshwater mussel species from fifteen Amazonian rivers and inferences on the evolution of the Hyriidae (Mollusca: Bivalvia: Unionida). Molecular Phylogenetics and Evolution 100: 148–159.

    Article  Google Scholar 

  • Soares Junior, A. V., Y. Hasui, J. B. S. Costa & F. B. Machado, 2011. Evolução do rifteamento e paleogeografia da margem atlântica equatorial do Brasil: Triássico ao Holoceno. Geociências 30(4): 669–692.

    Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima, F., 1993. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135(2): 599–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22): 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wächtler, K., M. C. D. Mansur & T. Richter, 2001. Larval types and early postlarval biology in naiads (Unionoida). In Bauer, G. & K. Wächtler (eds.), Ecology and Evolution of the Freshwater Mussels Unionoida. Springer-Verlag, Berlin: 93–125.

    Chapter  Google Scholar 

  • Whelan, N. V., A. J. Geneva & D. L. Graf, 2011. Molecular phylogenetic analysis of tropical freshwater mussels (Mollusca: Bivalvia: Unionoida) resolves the position of Coelatura and supports a monophyletic Unionidae. Molecular Phylogenetics and Evolution 61: 504–514.

    Article  PubMed  Google Scholar 

  • Wright, S., 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395–420.

    Article  Google Scholar 

  • Xia, X., 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30(7): 1720–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zieritz, A., J. I. Hoffman, W. Amos & D. C. Aldridge, 2010. Phenotypic plasticity and genetic isolation-by-distance in the freshwater mussel Unio pictorum (Mollusca: Unionoida). Evolutionary Ecology 24(4): 923–938.

    Article  Google Scholar 

  • Zouros, E., 2013. Biparental inheritance through uniparental transmission: the doubly uniparental inheritance (DUI) of mitochondrial DNA. Evolutionary Biology 40(1): 1–31.

    Article  Google Scholar 

Download references

Acknowledgements

Guilherme da Cruz Santos-Neto was supported by the Fundação Amazônia Paraense de Amparo a Pesquisa (FAPESPA). This paper was supported by grants from the Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (CNPq) – Universal/2006 and from FAPESPA/VALE S.A (Edital 001/2010, Process: 2010/110634; ICAAF 057/2011). We would like to thank João Miranda and his family, Leôncio Braz de Sousa Neto and his family and Ivoneide Ferreira da Silva for providing assistance during fieldwork. Bivalves were collected under licences 22204-1 and 21187-1 from the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Helena Tagliaro.

Additional information

Guest editors: Manuel P. M. Lopes-Lima, Ronaldo G. Sousa, Lyuba E. Burlakova, Alexander Y. Karatayev & Knut Mehler / Ecology and Conservation of Freshwater Bivalves

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cruz Santos-Neto, G., da Silva Nunes, I.S., Beasley, C.R. et al. Evolution in action: allopatry, variable diversity and a stepping-stone model of migration among populations of the freshwater bivalve Triplodon corrugatus from the north-eastern Amazon. Hydrobiologia 810, 227–237 (2018). https://doi.org/10.1007/s10750-017-3323-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3323-z

Keywords

Navigation