, Volume 810, Issue 1, pp 433–448 | Cite as

Influence of the flood pulse on reproduction and growth of Anodontites trapesialis (Lamarck, 1819) (Bivalvia: Mycetopodidae) in the Pantanal wetland, Brazil

  • Cláudia T. Callil
  • Marilene C. S. Leite
  • Lúcia A. F. Mateus
  • Jess W. Jones


Determining how, when, and why energy allocation occurs based on different life history traits, provides core knowledge for understanding evolution, ecology, and conservation of populations. We assumed that, in seasonal environments, Anodontites trapesialis, a common freshwater mussel in the Pantanal wetland, has to time its maturation, its larvae incubation time, and adjusts its breeding strategy seasonally. From histological analyses of gametes, larval count, and marginal increment of the shell rings, we present information about phenology and growth strategies to investigate the influence of environment and reproductive period on growth. We determined for the first time, asymptotic maximum size and longevity for this mussel. This species is a functional hermaphrodite, with maturation and spawning starting at the end of the flood period, when the water begins to recede and fishes return to the main river channel. The larvae, lasidium in this case, disperse on host fishes at this time. As we predicted, the flood pulse is the main regulatory factor to the growth patterns and reproductive period establishment. The species’ life history traits are discussed in the context of life history theory as adaptive responses to the dynamic balance imposed by the seasonality of the Pantanal.


Freshwater mussel Reproduction Life history tradeoff Conservation Wetland Seasonal flood pulse Pantanal Brazil 



We are grateful to CNPq Process No. 246223/2012-0 for the support provided during the post-doctoral and sabbatical period of C. Callil. Our thanks are also directed to the Institute of Biosciences and to the Graduate Program in Water Resources of UFMT for the financial support and logistics. We also are indebted to Manuel Lopes Lima, who invited and encouraged us to present these results at the II International Meeting of Biology and Freshwater Conservation of Bivalves, Buffalo, New York, U.S.A. Our many thanks to Professor Felipe Franco Curcio, from PPG of Zoology - UFMT, who reviewed the manuscript and made suggestions to improve it. The views expressed in this article are of the authors and do not necessarily represent those of the United States Fish and Wildlife.


  1. Anderson, M. & C. Ter Braak, 2003. Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation 73: 85–113.CrossRefGoogle Scholar
  2. Anthony, J. L., D. H. Kesler, W. L. Downing & J. A. Downing, 2001. Length-specific growth rates in freshwater mussels (Bivalvia: Unionidae): extreme longevity or generalized growth cessation? Freshwater Biology 46: 1349–1359.CrossRefGoogle Scholar
  3. Avelar, W. & S. Mendonça, 1998. Aspects of gametogenesis of Diplodon rotundus gratus (Wagner 1827) (Bivalvia: Hyriidae) in Brazil. American Malacological Bulletin 14: 157–163.Google Scholar
  4. Baird, D. G., L. R. Linton & R. W. Davies, 1986. Life-history evolution and post-reproductive mortality risk. Journal of Animal Ecology 55: 295–302.CrossRefGoogle Scholar
  5. Bauer, G., 1987. Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera. Journal of Animal Ecology 56: 691–704.CrossRefGoogle Scholar
  6. Bauer, G., 1992. Variation in the life span and size of the freshwater pearl mussel. Journal of Animal Ecology 61: 425–436.CrossRefGoogle Scholar
  7. Bauer, G., 1998. Allocation policy of female freshwater pearl mussels. Oecologia 117: 90–94.CrossRefPubMedGoogle Scholar
  8. Bayne, B. L., 2004. Phenotypic flexibility and physiological tradeoffs in the feeding and growth of marine bivalve molluscs. Integrative and Comparative Biology 44: 425–432.CrossRefPubMedGoogle Scholar
  9. Beasley, C. R., E. Tùry, W. G. Vale & C. H. Tagliaro, 2000. Reproductive cycle, management and conservation of Paxyodon syrmatophorus (Bivalvia: Hyriidae) from Tocantins River, Brazil. Journal of Molluscan Studies 66: 396–402.CrossRefGoogle Scholar
  10. Beasley, C. R., L. de Quadros Miranda, S. T. Alves, A. G. Melo, J. O. Souza & C. H. Tagliaro, 2005. Brood size and larval length of Paxyodon syrmatophorus (Bivalvia, Hyriidae) from the Tocantins River, Brazil. Amazoniana 18: 173–184.Google Scholar
  11. Bertalanffy, L. Von, 1938. A quantitative theory of organic growth (inquiries on growth laws II). Human Biology 10: 181–213.Google Scholar
  12. Beukema, J. J. & R. Dekker, 2005. Decline of recruitment success in cockles and other bivalves in the Wadden Sea: possible role of climate change, predation on postlarvae and fisheries. Marine Ecology Progress Series 287: 149–167.CrossRefGoogle Scholar
  13. Beukema, J. J., R. Dekker, K. Essink, & H. Michaelis, 2001. Synchronized reproductive success of the main bivalve species in the Wadden Sea: causes and consequences. Marine Ecology Progress Series 211: 143–155.CrossRefGoogle Scholar
  14. Beukema, J. J., R. Dekker & J. M. Jansen, 2009. Some like it cold: populations of the tellinid bivalve Macoma balthica (L.) suffer in various ways from a warming climate. Marine Ecology 384: 135–145.CrossRefGoogle Scholar
  15. Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York: 488.Google Scholar
  16. Bonetto, A. A. & I. D. Ezcurra, 1962. El desarrollo del lasidium of Anodontites trapesialis forbesianus (Lea) (Mollusca, Lamellibranchiata). Physis 23: 195–220.Google Scholar
  17. Callil, C. T. & M. C. D. Mansur, 2005. Ultrastructural analysis of the shells of Anodontites trapesialis (Lamarck) and Anodontites elongatus (Swainson) (Mollusca, Bivalvia, Etherioidea) from the Mato Grosso Pantanal Region, Brazil. Revista Brasileira de Zoologia 22: 724–734.CrossRefGoogle Scholar
  18. Callil, C. T. & M. C. D. Mansur, 2007. Gametogênese e dinâmica da reprodução de Anodontites trapesialis (Lamack) (Unionoida, Mycetopodidae) no lago Baia do Poço, planície de inundação do rio Cuiabá, Mato Grosso, Brasil. Revista Brasileira de Zoologia 24: 825–840.CrossRefGoogle Scholar
  19. Callil, C. T., D. Krinski & F. A. Silva, 2012. Variations on the larval incubation of Anodontites trapesialis (Unionoida, Mycetopodidae): Synergistic effect of the environmental factors and host availability. Brazilian Journal of Biology 72: 1–8.CrossRefGoogle Scholar
  20. Coe, W. R., 1943. Sexual differentiation in mollusks. I. Pelecypods. The Quarterly Review of Biology 194: 154–164.CrossRefGoogle Scholar
  21. Colle, A. C. & C. T. Callil, 2012. Environmental influences on the composition and structure of the freshwater mussels in shallow lakes in the Cuiabá River floodplain. Brazilian Journal of Biology 72: 249–256.CrossRefGoogle Scholar
  22. da Silva Junk, W. J. C. J., C. Nunes da Cunha & K. M. Wantzen, 2011. The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland, 1st ed. Pensoft, Sofia: 857.Google Scholar
  23. Fernandes, I. M., R. Henriques-Silva, J. Penha, J. Zuanon & P. R. Peres-Neto, 2014. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37: 464–475.Google Scholar
  24. Haag, W. R., 2012. North American freshwater mussels: Natural history. Ecology and Conservation, Cambridge.CrossRefGoogle Scholar
  25. Haag, W. R., 2013. The role of fecundity and reproductive effort in defining life-history strategies of North American freshwater mussels. Biological Reviews 88: 745–766.CrossRefPubMedGoogle Scholar
  26. Haag, W. R. & J. Stanton, 2003. Variation in fecundity and other reproductive traits in freshwater mussels. Freshwater Biology 48: 2118–2130.CrossRefGoogle Scholar
  27. Haag, W. R. & A. L. Rypel, 2011. Growth and longevity in freshwater mussels: Evolutionary and conservation implications. Biological Reviews 86: 225–247.CrossRefPubMedGoogle Scholar
  28. Haddon, M., 2001. Modelling and Quantitative Methods in Fisheries. Chapman and Hall, Boca Raton.Google Scholar
  29. Heino, M. & V. Kaitala, 1999. Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. Journal of Evolutionary Biology 12: 423–429.CrossRefGoogle Scholar
  30. Higgins, J., 2004. Introduction to Modern Nonparametric Statistics. Brooks Cole Cengage Learning, Belmont: 384.Google Scholar
  31. Hunter, J. R., 1985. Preservation on Northern anchovy in formaldehyde solution. In: Lasker, R. (ed.) An egg production method for estimating spawning biomass of pelagic fish: Application to the Northernanchovy, Engraulis mordax. U.S. Dep. Comm., NOAA Tech Rep., 36: 63–66.Google Scholar
  32. Jokela, J. & P. Mutikainen, 1995. Phenotypic plasticity and priority rules for energy allocation in a freshwater clam: A field experiment. Oecologia 104: 122–132.CrossRefPubMedGoogle Scholar
  33. Jones, J. W. & R. J. Neves, 2011. Influence of life-history variation on demographic responses of three freshwater mussel species (Bivalvia: Unionidae) in the Clinch River, USA. Aquatic Conservation Marine and Freshwater Ecosystems 21: 57–73.CrossRefGoogle Scholar
  34. Jones, J. W., R. J. Neves & E. M. Hallerman, 2012. Population performance criteria to evaluate reintroduction and recovery of two endangered mussel species, Epioblasma brevidens and Epioblasma capsaeformis (Bivalvia: Unionidae). Walkerana, Journal of the Freshwater Mollusk Conservation Society 35: 27–44.Google Scholar
  35. Junk, W. J. & C. Nunes da Cunha, 2005. Pantanal: A large South American wetland at a crossroads. Ecological Engineering 24: 391–401.CrossRefGoogle Scholar
  36. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain-systems. Canadian Special Publications for Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  37. Junk, W. J., M. T. F. Piedade, R. Lourival, F. Wittmann, P. Kandus, L. D. Lacerda, R. L. Bozelli, F. A. Esteves, C. Nunes da Cunha, L. Maltchik, J. Schöngart, Y. Schaeffer-Novelli & A. A. Agostinho, 2014. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation 24: 5–22.CrossRefGoogle Scholar
  38. Kanasawa, T. & S. Sato, 2008. Environmental and physiological controls on shell microgrowth pattern of Ruditapes philippinarum (Bivalvia, Veneroidae) from Japan. Journal of Molluscan Studies 74: 89–95.CrossRefGoogle Scholar
  39. Kozłowski, J., 1993. Measuring fitness in life-history studies. Trends in Ecological and Evolution 8: 84–85.CrossRefGoogle Scholar
  40. Lindstrom, M., & D. Bates, 1990. Nonlinear mixed effects models for repeated measures data. Biometrics: 673–687.Google Scholar
  41. Loverde-Oliveira, S. M. & V. L. M. Huszar, 2007. Phytoplankton ecological responses to the flood pulse in a Pantanal lake, central Brazil. Acta Limnologica Brasiliensia 19: 117–130.Google Scholar
  42. Loverde-Oliveira, S., V. L. M. Huszar, N. Mazzeo & M. Scheffer, 2009. Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems 12: 807–819.CrossRefGoogle Scholar
  43. McMahon, R. F. & A. E. Bogan, 2001. Mollusca Bivalvia. In Thorp, J. H. & A. P. Covich (eds.), Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego.Google Scholar
  44. Marçal, S. F. & S. Loverde-Oliveira, 2015. Phytoplankton in Coqueiro Lake (Pantanal de Poconé, Mato Grosso, Brazil). Biotemas 28: 9–25.CrossRefGoogle Scholar
  45. Morris, T. & L. D. Corkum, 1999. Unionid growth patterns in rivers of differing riparian vegetation. Freshwater Biology 42: 59–68.CrossRefGoogle Scholar
  46. Parada, E., S. Peredo, G. Lara & I. Valdebenito, 1989. Growth, age and life span of the freshwater mussel Diplodon chilensis (Gray, 1828). Archiv fur Hidrobiologie 115: 563–573.Google Scholar
  47. Parada, E., S. Peredo & C. Gallardo, 1990. Tácticas reproductivas y dinámica poblacional de Diplodon chilensis (Gray, 1828) (Bivalvia: Hyriidae). Revista Chilena de História Natural 63: 23–35.Google Scholar
  48. Peharda, M., C. A. Richardson, V. Onofri, A. Bratos & M. Crncevic, 2002. Age and growth of the bivalve Arca noae L. in the Croatian Adriatic Sea. Journal of Molluscan Studies 68: 307–310.CrossRefGoogle Scholar
  49. Penha, J., L. A. F. Mateus & J. Lobón-Cerviá, 2015. Population regulation in a neotropical seasonal wetland fish. Environmental Biology of Fishes 98: 1023–1034.CrossRefGoogle Scholar
  50. Pereira, D., M. C. D. Mansur, L. D. S. Duarte, A. S. Oliveira, D. M. Pimpão, C. T. Callil, C. Ituarte, E. Parada, S. Paredo, G. Darrigran, F. Sacarabino, C. Clavijo, L. Gladys, I. C. Miyahira, M. T. R. Rodriguez & C. Lasso, 2014. Bivalve distribution in hydrographic regions in South America: historical overview and conservation. Hydrobiologia 735: 15–44.Google Scholar
  51. Roff, D. A., 1992. The Evolution of Life Histories: Theory and Analysis. Chapman and Hall, New York.Google Scholar
  52. Sainmont, J., K. H. Andersen, Ø. Varpe & A. W. Visser, 2014. Capital versus income breeding in a seasonal environment. The American Naturalist 184: 466–476.CrossRefPubMedGoogle Scholar
  53. Stearns, S. C., 1977. The evolution of life history traits: A critique of the theory and a review of the data. Annual Reviews in Ecology and Systematics 8: 141–171.CrossRefGoogle Scholar
  54. Stearns, S. C., 1989. Trade-offs in life-history evolution. Functional Ecology 3: 259–268.CrossRefGoogle Scholar
  55. Stearns, S. C., 1992. The evolution of life histories. Oxford: Oxford University Press.Google Scholar
  56. Stephens, P. A., I. L. Boyd, J. M. McNamara & A. I. Houston, 2009. Capital breeding and income breeding: Their meaning, measurement, and worth. Ecology 90: 2057–2067.CrossRefPubMedGoogle Scholar
  57. Varpe, Ø., C. Jørgensen, G. A. Tarling & Ø. Fiksen, 2009. The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118: 363–370.CrossRefGoogle Scholar
  58. Vaughn, C. C. & C. M. Taylor, 2000. Macroecology of a host-parasite relationship. Ecography 23: 11–20.CrossRefGoogle Scholar
  59. Vazzoler, A. E. A. M., 1996. Biologia da Reprodução de Peixes Teleósteos: Teoria e Prática. Editora da Universidade Estadual do Maringá.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Cláudia T. Callil
    • 1
  • Marilene C. S. Leite
    • 2
  • Lúcia A. F. Mateus
    • 3
  • Jess W. Jones
    • 4
  1. 1.EcoBiv – Ecology and Conservation of Freshwater Mussel Group, Departamento de Biologia e ZoologiaInstituto de BiociênciasUniversidade Federal de Mato GrossoCuiabáBrazil
  2. 2.Departamento de Botânica e Ecologia, Instituto de BiociênciasUniversidade Federal de Mato GrossoCuiabáBrazil
  3. 3.Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Instituto de BiociênciasUniversidade Federal de Mato GrossoCuiabáBrazil
  4. 4.U.S. Fish and Wildlife Service, Department of Fish and Wildlife ConservationVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations