, Volume 790, Issue 1, pp 287–298 | Cite as

Biological recovery of acidified alpine lakes may be delayed by the dispersal limitation of aquatic insect adults

  • Peter Bitušík
  • Marek Svitok
  • Milan Novikmec
  • Katarína Trnková
  • Ladislav Hamerlík
Primary Research Paper


The dispersal of aquatic insects plays an important role in the colonization and recolonization of newly created and previously disturbed habitats. The heavy acidification of some alpine lakes in the Tatra Mountains, Slovakia, was followed by rapid chemical recovery starting in the 1990s; however, the recolonization of aquatic insects has been delayed, potentially due to the limited dispersal of aquatic insects in the alpine environment. Therefore, to investigate dispersal ability of aquatic species in situ, we set up 120 yellow pan traps on 12 transects evenly distributed over a distance of about 600 m between a non-acidified and a formerly acidified alpine lake. A total of 1,202 aquatic insect adults were caught. Chironomidae dominated but adults of Trichoptera, Plecoptera and Ephemeroptera were also recorded. For both lakes the total number of adults declined exponentially with distance from the lakes, and negative binomial models predicted that virtually no imagoes would be found beyond 300 m from the lakes. The majority of species were recorded within 150 m of the lake shore with the exception of two chironomid species. Such a low dispersal potential of aquatic insects between alpine lakes could explain the slow biological recovery of some lakes following disturbance by acidification stress.


Acidification Alpine environment Chironomids EPT Recolonization 



Special thanks go to Ilja Krno and Valerian Franc for identification of some stonefly specimens and terrestrial beetles, respectively. Ingrid Turisová provided information on catchment vegetation. Ferdinand Šporka is acknowledged for his data from an automatic weather station on the prevailing winds in the valley. We also thank Mariana Kaštierová for the map of Tatra Mts. We are grateful to David Hardekopf for linguistic corrections and the two anonymous reviewers for helpful comments. The study of the Tatra lakes recovery was co-supported by VEGA 2/0081/13, Grant Agency of the Czech Republic (Project No. P503/14/09231S) and by project ITMS 26210120024 “Renewal and development of infrastructure for ecological and environmental research at UMB”.

Supplementary material

10750_2016_3039_MOESM1_ESM.pdf (280 kb)
Supplementary material 1 (PDF 280 kb)


  1. Angeler, D. G. & R. K. Johnson, 2012. Temporal scales and patterns of invertebrate biodiversity dynamics in boreal lakes recovering from acidification. Ecological Applications 22: 1172–1186.CrossRefPubMedGoogle Scholar
  2. Armitage, P. D., 1995. Behaviour and ecology of adults. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae. The Biology and Ecology of Non-biting Midges. Chapman and Hall, London: 194–224.Google Scholar
  3. Ægisdóttir, H. H., P. Kuss & J. Stöcklin, 2009. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Annals of Botany 104: 1313–1322.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ballayová, N., K. Goffová, F. Čiampor & Z. Čiamporová-Zaťovičová, 2015. Taxonomy of species Heterotrissocladius marcidus (Chironomidae) based on DNA analysis and genetic variability of its Tatra population. The 8th Central European Dipterological Conference: Conference abstracts, Belianum, Banská Bystrica, Slovakia: 43–47. (in Slovak)Google Scholar
  5. Bauernfeind, E. & U. H. Humpesch, 2001. Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ökologie. Verlag des Naturhistorischen Museums, Vienna, 239 ppGoogle Scholar
  6. Bitušík, P., F. Šporka & I. Krno, 2010. Benthic macroinvertebrate fauna of two alpine lakes over the last century: the value of historical data for interpreting environmental changes. Biologia 65: 884–891.Google Scholar
  7. Bitušík, P., J. Kopáček, E. Stuchlík & F. Šporka, 2006a. Limnology of lakes in the Tatra Mountains. Biologia, Bratislava 61(Supplement 18): 1–221.Google Scholar
  8. Bitušík, P., M. Svitok, P. Kološta & M. Hubková, 2006b. Classification of the Tatra Mountains lakes (Slovakia) using chironomids (Diptera, Chironomidae). Biologia, Bratislava 61(Supplement 18): 191–202.Google Scholar
  9. Bjornstad, O. N., 2015. ncf: Spatial nonparametric covariance functions. R package version 1.1-6.Google Scholar
  10. Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.CrossRefGoogle Scholar
  11. Briers, R. A., H. M. Cariss & J. H. R. Gee, 2002. Dispersal of adult stoneflies (Plecoptera) from upland streams draining catchments with contrasting land-use. Archiv für Hydrobiologie 155: 627–644.CrossRefGoogle Scholar
  12. Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York: 488.Google Scholar
  13. Burt, P. J. A. & D. E. Pedgley, 1997. Nocturnal insect migration: effects of local winds. Advances in Ecological Research 27: 61–92.CrossRefGoogle Scholar
  14. Cane, J. H., R. L. Minckley & L. J. Kervin, 2000. Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: pitfalls of pan-trapping. Journal of the Kansas Entomological Society 73: 225–231.Google Scholar
  15. Čiamporová-Zaťovičová, Z. & F. Čiampor Jr., 2011. Aquatic beetles of the alpine lakes: diversity, ecology and small-scale population genetics. Knowledge and Management of Aquatic Ecosystems 402: 10.Google Scholar
  16. Clobert, J., E. Danchin, A. A. Dhondt & J. D. Nichols, 2001. Dispersal. Oxford University Press, Oxford: 452.Google Scholar
  17. Coulson, S. J., I. D. Hodkinson & N. R. Webb, 2003. Aerial dispersal of invertebrates over a High Arctic glacier foreland. Polar Biology 26: 530–537.CrossRefGoogle Scholar
  18. Delettre, Y. R. & N. Morvan, 2000. Dispersal of adult aquatic Chironomidae (Diptera) in agricultural landscapes. Freshwater Biology 44: 399–411.CrossRefGoogle Scholar
  19. Finn, D. S., D. M. Theobald, W. C. Black & N. L. Poff, 2006. Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Molecular Ecology 15: 3553–3566.CrossRefPubMedGoogle Scholar
  20. Foster, G. N., 2004. Extra terrestrials – British Empleurus. Latissimus 18: 18–19.Google Scholar
  21. Gratton, C., J. Donaldson & M. J. Vander Zanden, 2008. Ecosystem linkages between lakes and the surrounding terrestrial landscape in Northeast Iceland. Ecosystem 11: 764–774.CrossRefGoogle Scholar
  22. Hågvar, S., 2012. Primary Succession in Glacier Forelands: How Small Animals Conquer New Land Around Melting Glaciers. In Young S. S. & S. E. Silvern (eds), International Perspectives on Global Environmental Change. INTECH Open Access Publisher: free online http://www.intechopen.com: 151–172.
  23. Hamerlík, L., F. Šporka & Z. Zaťovičová, 2006. Macroinvertebrates of inlets and outlets of the Tatra Mountain lakes (Slovakia). Biologia 61: S167–S179.CrossRefGoogle Scholar
  24. Hanski, I., 2001. Population dynamics consequences of dispersal in local populations and in metapopulations. In Clobert, J., E. Danchin, A. A. Dhont & J. D. Nichols (eds), Dispersal. Oxford University Press, New York: 283–298.Google Scholar
  25. Heino, J., 2013. Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171: 971–980.CrossRefPubMedGoogle Scholar
  26. Hodkinson, I. D., N. R. Webb & S. J. Coulson, 2002. Primary community assembly on land – the missing stages: why are the heterotrophic organisms always there first? Journal of Ecology 90: 569–577.CrossRefGoogle Scholar
  27. Hořická, Z., E. Stuchlík, I. Hudec, M. Černý & J. Fott, 2006. Acidification and the structure of crustacean zooplankton in mountain lakes: the Tatra Mountains (Slovakia and Poland). Biologia, Bratislava 61(Supplement 18): 121–134.Google Scholar
  28. Incagnone, G., F. Marrone, R. Barone, L. Robba & L. Naselli-Flores, 2014. How do freshwater organisms cross the ‘dry ocean’? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750: 103–123.CrossRefGoogle Scholar
  29. Jackman, S., 2015. pscl: Classes and methods for R developed in the political science computational laboratory, Stanford University, Department of Political Science. Stanford, California. R package version 1.4.9.Google Scholar
  30. Junker, M., S. Wagner, P. Gros & T. Schmitt, 2010. Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly. Oecologia 164: 971–980.CrossRefPubMedGoogle Scholar
  31. Kopáček, J., J. Veselý & E. Stuchlík, 2001. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850-2000). Hydrology and Earth System Sciences 5: 391–405.CrossRefGoogle Scholar
  32. Kopáček, J., E. Stuchlík & D. Hardekopf, 2006. Chemical composition of the Tatra Mountain lakes: recovery from acidification. Biologia, Bratislava 61(Suppl. 18): 21–33.Google Scholar
  33. Kopáček, J., J. Hejzlar, J. Kaňa, S. A. Norton, P. Porcal & J. Turek, 2009. Trends in aluminium export from a glaciated mountain area to surface waters: effects of soil development, atmospheric acidification, and nitrogen-saturation. Journal of Inorganic Biochemistry 103: 1439–1448.CrossRefPubMedGoogle Scholar
  34. Kopáček, J., S. Bičárová, J. Hejzlar, M. Hynštová, J. Kaňa, M. Mitošinková, P. Porcal, E. Stuchlík & J. Turek, 2015. Catchment biogeochemistry modifies long-term effects of acidic deposition on chemistry of mountain lakes. Biogeochemistry 125: 315–335.CrossRefGoogle Scholar
  35. Krno, I., F. Šporka, J. Galas, L. Hamerlík, Z. Zaťovičová & P. Bitušík, 2006. Litttoral benthic macroinvertebrates of mountain lakes in the Tatra Mountains (Slovakia, Poland). Biologia, Bratislava 61(Supplement 18): 147–166.Google Scholar
  36. Lake, P. S., N. Bond & P. Reich, 2007. Linking ecological theory with stream restoration. Freshwater Biology 52: 597–615.CrossRefGoogle Scholar
  37. Langton, P. H. & H. Visser, 2003. Chironomidae exuviae: a key to pupal exuviae of the West Palaearctic Region. Interactive Identification System for the Europaean Limnofauna (IISEL), World Biodiversity Database, CD-ROM Series.Google Scholar
  38. Langton, P. H. & L. C. V. Pinder, 2007. Keys to the adult male Chironomidae of Britain and Ireland, Vols. 1 and 2. Freshwater Biological Association, 239 and 168 pp.Google Scholar
  39. Loader, C., 1997. Locfit: an introduction. Statistical Computing and Graphics Newsletter 8: 11–17.Google Scholar
  40. Loader, C., 1999. Local Regression and Likelihood. Springer, New York, 290 ppGoogle Scholar
  41. Loader, C., 2013. Locfit: local regression, likelihood and density estimation. R package version 1.5-9.1Google Scholar
  42. Macneale, K. H., B. L. Peckarsky & G. E. Likens, 2004. Contradictory results from different methods for measuring direction of insect flight. Freshwater Biology 49: 1260–1268.CrossRefGoogle Scholar
  43. Macneale, K. H., B. L. Peckarsky & G. E. Likens, 2005. Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshwater Biology 50: 1117–1130.CrossRefGoogle Scholar
  44. Malicky, H., 2004. Atlas of European Trichoptera, 2nd ed. Springer, Dordrecht: 359.Google Scholar
  45. Martin, T. G., B. A. Wintle, J. R. Rhodes, P. M. Kuhnert, S. A. Field, S. J. Low-Choy, A. J. Tyre & H. P. Possingham, 2005. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters 8: 1235–1246.CrossRefPubMedGoogle Scholar
  46. Mazon, M. & S. Bordera, 2008. Effectiveness of two sampling methods used for collecting Ichneumonidae (Hymenoptera) in the Cabańeros National Park (Spain). European Journal of Entomology 105: 879–888.CrossRefGoogle Scholar
  47. McCullagh, P. & J. A. Nelder, 1989. Generalized Linear Models, 2nd ed. Chapman & Hall/CRC Press, Boca Raton: 532.CrossRefGoogle Scholar
  48. Miguelez, D. & L. F. Valladares, 2008. Seasonal dispersal of water beetles (Coleoptera) in an agricultural landscape: a study using Moericke traps in northwest Spain. Annales de la Société Entomologique de France (n.s.) 44: 317–326.CrossRefGoogle Scholar
  49. Moericke, V., 1951. Eine Farbafalle zur Kontrolle des Fluges von Blattlausen, insbesondere der Pfirsichblattlaus, Myzodes persicae (Sulz.). Nachrichtenblatt des Deutschen Pflanzenschutzdiensten 3: 23–24.Google Scholar
  50. Monaghan, M. T., P. Spaak, C. T. Robinson & J. V. Ward, 2002. Population genetic structure of 3 alpine stream insects: influences of gene flow, demographics, and habitat fragmentation. Journal of the North American Benthological Society 21: 114–131.CrossRefGoogle Scholar
  51. Monsevičius, V., 2004. Comparison of three methods of sampling wild bees (Hymenoptera, Apoidea) in Čepkeliai Nature Reserve (South Lithuania). Ekologija 4: 32–39.Google Scholar
  52. Murphy, J. F., J. H. Winterbottom, S. Orton, G. L. Simpson, E. M. Shilland & A. G. Hildrew, 2014. Evidence of recovery from acidification in the macroinvertebrate assemblages of UK fresh waters: a 20-year time series. Ecological Indicators 37: 330–340.CrossRefGoogle Scholar
  53. Novikmec, M., M. Veselská, P. Bitušík, L. Hamerlík, B. Reduciendo Klementová, Z. Matúšová & M. Svitok, 2015. Checklist of benthic macroinvertebrates of high altitude ponds of the Tatra Mountains (Central Europe) with new records of two species for Slovakia. Check List, The Journal of Biodiversity Data 11: 1522.CrossRefGoogle Scholar
  54. Petersen, I., Z. Masters, A. G. Hildrew & N. L. Ormerod, 2004. Dispersal of adult aquatic insects in catchments of differing land use. Journal of Applied Ecology 41: 934–950.CrossRefGoogle Scholar
  55. R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  56. Ruel, J. C., D. Pin & K. Cooper, 1998. Effect of topography on wind behaviour in a complex terrain. Forestry 71: 261–265.CrossRefGoogle Scholar
  57. Sæther, O. A., P. Ashe & D. A. Murray, 2000. Family Chironomidae. In Papp, L. & B. Darvas (eds), Contribution to a Manual of Palaearctic Diptera (with special reference to flies of economic importance). Appendix Science Herald, Budapest: 113–334.Google Scholar
  58. Savolainen, E., 1978. Swarming in Ephemeroptera: the mechanism of swarming and the effects of illumination and weather. Annales Zoologici Fennici 15: 17–52.Google Scholar
  59. Smith, R. F., L. C. Alexander & W. O. Lamp, 2009. Dispersal by terrestrial stages of stream insects in urban watersheds: a synthesis of current knowledge. Journal of the North American Benthological Society 28: 1022–1037.CrossRefGoogle Scholar
  60. Smoleň, F. & M. Ostrožlík, 1991. Biometeorological cooling at high mountain positions under various meteorological conditions. In Panenka, I. (ed.), Mountainous Meteorology, Climatology and Aerology of the Lower Layers of Troposphere. Slovak Hydrometeorological Institute, Bratislava: 159–165.Google Scholar
  61. Soetaert, K., 2016. plot3D: Plotting multi-dimensional data. R package version 1.1Google Scholar
  62. Stuchlík, E., J. Kopáček, J. Fott & Z. Hořická, 2006. Chemical composition of the Tatra Mountain lakes: response to acidification. Biologia, Bratislava 61(Supplement 18): 11–20.Google Scholar
  63. Stur, E. & T. Ekrem, 2006. A revision of Western Palaearctic species of the Micropsectra atrofasciata species group (Diptera: Chironomidae). Zoological Journal of the Linnean Society 146: 165–225.CrossRefGoogle Scholar
  64. Soszyńska‐Maj, A., L. Paasivirta & W. Giłka, 2015. Why on the snow? Winter emergence strategies of snow‐active Chironomidae (Diptera) in Poland. Insect Science. doi: 10.1111/1744-7917.12223.PubMedGoogle Scholar
  65. Teslenko, V.A. & L.A. Zhiltzova, 2009. Key to the stoneflies (Insecta, Plecoptera) of Russia and adjacent countries. Imagines and nymphs. Dalnauka, Vladivostok, 382 ppGoogle Scholar
  66. Ustrnul, Z., E. Walawender, D. Czekierda, P. Šťastný, M. Lapin & K. Mikulová, 2015. II.3. Opady atmosferyczne i pokrywa sniezna (Precipitation and snow cover). In Dabrowska, K. & M. Guzik (eds), Atlas Tatr – przyroda nieozywiona (Atlas of the Tatra Mts. – Abiotic Nature). Tatrzański Park Narodowy, Zakopane: 12–15.Google Scholar
  67. Vallenduuk, H. J. & H. K. M. Moller Pillot, 2007. Chironomidae larvae of the Netherlands and adjacent lowlands. General ecology and Tanypodinae. KNNV Publishing, Zeist, 144 ppGoogle Scholar
  68. Venables, W. N. & B. D. Ripley, 2002. Modern applied statistics with S, 4th ed. Springer, New York: 265.CrossRefGoogle Scholar
  69. Wilcock, H. R., A. G. Hildrew & R. A. Nichols, 2001. Genetic differentiation of a European caddisfly: past and present gene flow among fragmented larval habitats. Molecular Ecology 10: 1821–1834.CrossRefPubMedGoogle Scholar
  70. Zeileis, A., 2004. Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software 11: 1–17.CrossRefGoogle Scholar
  71. Zeileis, A., C. Kleiber & S. Jackman, 2008. Regression models for count data in R. Journal of Statistical Software 27: 1–25.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peter Bitušík
    • 1
  • Marek Svitok
    • 2
  • Milan Novikmec
    • 2
  • Katarína Trnková
    • 1
  • Ladislav Hamerlík
    • 1
    • 3
  1. 1.Department of Biology and EcologyMatej Bel UniversityBanská BystricaSlovakia
  2. 2.Department of Biology and General EcologyTechnical University in ZvolenZvolenSlovakia
  3. 3.Department of Quaternary Geology, Institute of Geological SciencesPolish Academy of SciencesWarsawPoland

Personalised recommendations