, Volume 787, Issue 1, pp 341–352 | Cite as

Bathypelagic percid fry, a strongly predominating fry community in a deep European reservoir

  • Zuzana Sajdlová
  • Tomáš Jůza
  • Jaroslava Frouzová
  • Jaromír Seďa
  • Martin Čech
Primary Research Paper


The distribution, species composition, abundance and shoaling behaviour of young-of-year fish were studied in the canyon-shaped Vír Reservoir (Czech Republic) in mid-June 2010. Using the SIMRAD EK60 echosounder (frequency 120 kHz), fry were acoustically sampled along the longitudinal profile of the reservoir. A framed trawl was used simultaneously to collect fry in the open water. Apparent differences were found in the density of fry between the epipelagic, littoral and bathypelagic zones. Bathypelagic fry strongly predominated in the total fry community creating 95.3% while epipelagic and littoral fry contributed only 4.7%. The bathypelagic fry were represented by perch Perca fluviatilis (84.8%), zander Sander lucioperca (14.9%) and ruffe Gymnocephalus cernua (0.15%) and were observed all along the longitudinal profile of the reservoir creating a distinct layer on the echogram. The layer, composed of shoaling and non-shoaling fry individuals, reached its greatest depth in the Bay part of the reservoir (7.5–14.5 m) and it was rising in the water column towards the tributary. The situation that the bathypelagic percid fry predominate in the reservoir is absolutely unique and it is completely different from published observations from other canyon-shaped reservoirs where epipelagic percid fry prevailed.


Echosounder Fry trawling Gymnocephalus cernua Perca fluviatilis Sander lucioperca Shoals 



Authors thank Jana Zemanová for zooplankton analysis and Mary Morris for English proofreading of the manuscript. The study was supported by the Grant Agency of the Czech Republic (project No. 206/09/P266), CEKOPOT (project No. CZ.1.07/2.3.00/20.0204) and the Norwegian Financial Mechanism 2009-2014 under contract number MSMT-28477/2014 (project No. 7F14316).


  1. Appenzeller, A. R. & W. C. Leggett, 1995. An evaluation of light-mediated vertical migration of fish based on hydroacoustic analysis of the diel vertical movements of rainbow smelt (Osmerus mordax). Canadian Journal of Fisheries and Aquatic Sciences 52: 504–511.CrossRefGoogle Scholar
  2. Baldwin, C. M., D. A. Beauchamp & C. P. Gubala, 2002. Seasonal and diel distribution and movement of cutthroat trout from ultrasonic telemetry. Transactions of the American Fisheries Society 131: 143–158.CrossRefGoogle Scholar
  3. Brown, T. G., B. Runciman, M. J. Bradford & S. A. Pollard, 2009. Biological Synopsis of Yellow Perch (Perca flavescens). Fisheries and Oceans Canada, Science Branch, Pacific Region, Pacific Biological Station, Nanaimo.Google Scholar
  4. Čech, M., M. Kratochvíl, J. Kubečka, V. Draštík & J. Matěna, 2005. Diel vertical migrations of bathypelagic perch fry. Journal of Fish Biology 66: 685–702.CrossRefGoogle Scholar
  5. Čech, M. & J. Kubečka, 2006. Ontogenetic changes in the bathypelagic distribution of European perch fry Perca fluviatilis monitored by hydroacoustic methods. Biologia 61: 211–219.Google Scholar
  6. Čech, M., J. Kubečka, J. Frouzová, V. Draštík, M. Kratochvíl, J. Matěna & J. Hejzlar, 2007a. Distribution of the bathypelagic perch fry layer along the longitudinal profile of two large canyon-shaped reservoirs. Journal of Fish Biology 70: 141–154.CrossRefGoogle Scholar
  7. Čech, M., J. Kubečka, J. Frouzová, V. Draštík, M. Kratochvíl & J. Jarošík, 2007b. Impact of flood on distribution of bathypelagic perch fry layer along the longitudinal profile of large canyon-shaped reservoir. Journal of Fish Biology 70: 1109–1119.CrossRefGoogle Scholar
  8. Čech, M., J. Frouzová, J. Peterka, T. Jůza, V. Draštík, M. Vašek & J. Kubečka, 2016. Sampling of deep benthic perch fry: insight into the diel vertical migrations. Hydrobiologia. doi: 10.1007/s10750-016-2803-x. (on-line first from 9 May 2016).Google Scholar
  9. Eklöv, P., 1997. Effects of habitat complexity and prey abundance on the spatial and temporal distributions of perch (Perca fluviatilis) and pike (Esox lucius). Canadian Journal of Fisheries and Aquatic Sciences 54: 1520–1531.CrossRefGoogle Scholar
  10. Frouzová, J. & J. Kubečka, 2004. Changes of acoustic target strength during juvenile perch development. Fisheries Research 66: 355–361.CrossRefGoogle Scholar
  11. Foote, K. G., H. P. Knudsen, G. Vestnes, D. N. MacLennan & E. J. Simmonds, 1987. Calibration of acoustic instruments for fish density estimation. ICES Cooperative Research Report 144: 1–70.Google Scholar
  12. Gliwicz, Z. M. & A. Jachner, 1992. Diel migrations of juvenile fish: a ghost of predation past or present? Arch. Hydrobiologia 124: 385–410.Google Scholar
  13. Guillard, J., M. E. Perga, M. Colon & N. Angeli, 2006. Hydroacoustic assessment of young of year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fisheries Management and Ecology 13: 319–327.CrossRefGoogle Scholar
  14. Jarolím, O., J. Kubečka, M. Čech, M. Vašek, J. Peterka & J. Matěna, 2010. Sinusoidal swimming in fishes: the role of season, density of large zooplankton, fish length, time of the day, weather condition and solar radiation. Hydrobiologia 654: 253–265.CrossRefGoogle Scholar
  15. Jůza, T., M. Čech, J. Kubečka, M. Vašek, J. Peterka & J. Matěna, 2010. The influence of the trawl mouth opening size and net colour on catch efficiency during sampling of early fish stages. Fisheries Research 105: 125–133.CrossRefGoogle Scholar
  16. Jůza, T., M. Čech, J. Kubečka, M. Vašek, J. Peterka, M. Kratochvíl & J. Matěna, 2012. The influence of the trawl mouth opening size and net colour on catch efficiency during sampling of early stages of perch (Perca fluviatilis) and pikeperch (Sander lucioperca) in the bathypelagic layer of a canyon-shaped reservoir. Fisheries Research 123: 21–25.CrossRefGoogle Scholar
  17. Kratochvíl, M., J. Peterka, J. Kubečka, J. Matěna, M. Vašek, I. Vaníčková & J. Seďa, 2008. Diet of larvae and juvenile perch, Perca fluviatilis performing diel vertical migrations in a deep reservoir. Folia Zoologica 57: 313–323.Google Scholar
  18. Kratochvíl, M., M. Čech, M. Vašek, J. Kubečka, J. Hejzlar, J. Matěna & J. Seďa, 2010. Diel vertical migrations of age 0 + percids in a shallow, well-mixed reservoir. Journal of Limnology 69: 305–310.CrossRefGoogle Scholar
  19. Lazzaro, X., 1987. A review of planktivorous fishes: their evolution, feeding behaviour, selectivities, and impacts. Hydrobiologia 146: 97–167.CrossRefGoogle Scholar
  20. Lewin, W. C., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49: 410–424.CrossRefGoogle Scholar
  21. Macháček, J., 1991. Indirect effect of planktivorous fish on the growth and reproduction of Daphnia galeata. Hydrobiologia 225: 193–197.CrossRefGoogle Scholar
  22. Mehner, T., H. Dörner & H. Schultz, 1998. Factors determining the year-class strength of age-0 Eurasian perch (Perca fluviatilis L.) in a biomanipulated reservoir. Archive of Fishery and Marine Research 46: 241–251.Google Scholar
  23. Petrtýl, M., L. Kalous, J. Frouzová & M. Čech, 2015. Effects of habitat type on short-and long-term growth parameters of the European perch (Perca fluviatilis L.). International Review of Hydrobiology 100: 13–20.CrossRefGoogle Scholar
  24. Pitcher, T. J. & J. K. Parrish, 1993. Functions of shoaling behavior in teleosts. In Pitcher, T. (ed.), Behaviour of Teleost Fishes. Chapman and Hall, London: 363–439.CrossRefGoogle Scholar
  25. Post, J. R. & D. J. McQueen, 1988. Ontogenetic changes in the distribution of larval and juvenile yellow perch (Perca flavescens): a response to prey or predators? Canadian Journal of Fisheries and Aquatic Sciences 45: 1820–1826.CrossRefGoogle Scholar
  26. Probst, W. N. & R. Eckmann, 2009. The influence of light on the diel vertical migration of young-of-the-year burbot Lota lota in Lake Constance. Journal of Fish Biology 74: 150–166.CrossRefPubMedGoogle Scholar
  27. Simmonds, J. & D. N. MacLennan, 2008. Fisheries Acoustics: Theory and Practice. Wiley, New York.Google Scholar
  28. Staby, A., J. Srisomwong & R. Rosland, 2013. Variation in DVM behaviour of juvenile and adult pearlside (Maurolicus muelleri) linked to feeding strategies and related predation risk. Fisheries Oceanography 22: 90–101.CrossRefGoogle Scholar
  29. StatSoft, 2011. STATISTICA data analysis software system, version 10. StatSoft Inc.,
  30. Treasurer, J. W., 1988. The distribution and growth of lacustrine 0 + perch, Perca fluviatilis. Environmental biology of fishes 21: 37–44.CrossRefGoogle Scholar
  31. Urho, L., 1996a. Identification of perch (Perca fluviatilis), pikeperch (Stizostedion lucioperca) and ruffe (Gymnocephalus cernua) larvae. Annales Zoologici Fennici 33: 659–668.Google Scholar
  32. Urho, L., 1996b. Habitat shifts of perch larvae as survival strategy. Annales Zoologici Fennici 33: 329–340.Google Scholar
  33. Wang, N. & R. Eckmann, 1994. Distribution of perch (Perca fluviatilis L.) during their first year of life in Lake Constance. Hydrobiologia 277: 135–143.CrossRefGoogle Scholar
  34. Vašek, M., J. Kubečka, J. Peterka, M. Čech, V. Draštík, M. Hladík, M. Prchalová & J. Frouzová, 2004. Longitudinal and vertical spatial gradients in the distribution of fish within a canyon-shaped reservoir. International Review of Hydrobiology 89: 352–362.CrossRefGoogle Scholar
  35. Vašek, M., J. Kubečka, J. Matěna & J. Seďa, 2006. Distribution and diet of 0 + fish within a canyon-shaped European reservoir in late summer. International Review of Hydrobiology 91: 178–194.CrossRefGoogle Scholar
  36. Vašek, M., M. Prchalová, J. Peterka, H. A. M. Ketelaars, A. J. Wagenvoort, M. Čech, V. Draštík, M. Říha, T. Jůza, M. Kratochvíl, T. Mrkvička, P. Blabolil, D. S. Boukal, J. Duras & J. Kubečka, 2013. The utility of predatory fish in biomanipulation of deep reservoirs. Ecological Engineering 52: 104–111.CrossRefGoogle Scholar
  37. Vejřík, L., I. Matějíčková, T. Jůza, J. Frouzová, J. Seďa, P. Blabolil, D. Ricard, M. Vašek, J. Kubečka, M. Říha & M. Čech, 2016a. Small fish use the hypoxic pelagic zone as a refuge from predators. Freshwater Biology 61: 899–913.CrossRefGoogle Scholar
  38. Vejřík, L., I. Matějíčková, J. Seďa, P. Blabolil, T. Jůza, M. Vašek, D. Ricard, J. Matěna, J. Frouzová, J. Kubečka, M. Říha & M. Čech, 2016b. Who is who: an anomalous predator-prey role exchange between cyprinids and perch. Plos One 11: e0156430.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Whiteside, M. C., C. M. Swindoll & W. L. Doolittle, 1985. Factors affecting the early life history of yellow perch, Perca flavescens. Environmental Biology of Fishes 12: 47–56.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zuzana Sajdlová
    • 1
    • 2
  • Tomáš Jůza
    • 1
  • Jaroslava Frouzová
    • 1
  • Jaromír Seďa
    • 1
  • Martin Čech
    • 1
  1. 1.Biology Centre of the Czech Academy of SciencesInstitute of HydrobiologyČeské BudějoviceCzech Republic
  2. 2.Faculty of SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations