, Volume 787, Issue 1, pp 205–215 | Cite as

Effects of sediment-borne nutrient and litter quality on macrophyte decomposition and nutrient release

  • Miao Wang
  • Tao Hao
  • Xuwei Deng
  • Zhengxiang Wang
  • Zhaohui Cai
  • Zhongqiang Li
Primary Research Paper


Macrophyte decomposition is a critical process that affects carbon and nutrient cycling, and energy flow, although the majority of the details involved in the process remain unclear. For the present study, a litter bag experiment was conducted to investigate the effects of sediment-borne nutrient and litter quality on the decomposition rates and nutrient release of four macrophyte life forms (emergent macrophyte: Phragmites australis, free-floating macrophyte: Hydrocharis dubia, floating-leaved macrophyte: Nymphoides peltata, submerged macrophyte: Ceratophyllum demersum), and a species mixture. Our results indicated that litter quality significantly influenced macrophyte decomposition and nutrient release. High-quality litter species (high initial nitrogen and phosphorus contents, as well as low C:N, C:P, and N:P ratios) decomposed more rapidly than low-quality litter species, and the initial C:N and C:P ratios, rather than the initial N and P contents, were effective indicators of the decomposition rate of macrophytes. Sediment-borne nutrients had little effect on the decomposition rate, yet a strong effect on the release of N and P, although the interactions between litter quality and sediment-borne nutrients significantly affected the decomposition rate. Three-way ANOVA analysis revealed that the litter quality imparted a more potent effect on the macrophyte decomposition rate and release of N and P than sediment-borne nutrients. These results implied that litter quality interacts with sediment-borne nutrients and may control macrophyte decomposition in shallow lakes.


Decomposition N and P release Sediment-borne nutrient Litter quality Macrophytes 



This study was supported by the National Natural Science Foundation of China (31270261) and (31570366).


  1. Abelho, M., 2009. Leaf-litter mixtures affect breakdown and macroinvertebrate colonization rates in a stream ecosystem. International Review of Hydrobiology 94: 436–451.CrossRefGoogle Scholar
  2. Berglund, S. L. & G. I. Ågren, 2012. When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos 121: 1112–1120.CrossRefGoogle Scholar
  3. Bianchini Jr., I., M. B. Cunha-Santino & A. M. Perte, 2008. Oxygen demand during mineralization of aquatic macrophytes from an oxbow lake. Brazilian Journal of Biology 68: 61–67.CrossRefGoogle Scholar
  4. Canfield, D. E., B. Thamdrup & E. Kristensen, 2005. Aquatic geimicobiology. Advances in marine biology, Vol. 48. Elsevier, Amsterdam: 424.Google Scholar
  5. Carvalho, P., S. M. Thomaz & L. M. Bini, 2005. Effects of temperature on decomposition of a potential nuisance species: the submerged aquatic macrophyte Egria najas Planchon (Hydrocharitaceae). Brazilian Journal of Biology 65: 51–60.CrossRefGoogle Scholar
  6. Chapman, K. J., J. B. Whittaker & O. W. Heal, 1988. Metabolic and faunal activity in litters of tree mixtures compared with pure stands. Agriculture Ecosystems & Environment 11: 33–40.CrossRefGoogle Scholar
  7. Chapman, S. K., G. S. Newman, S. C. Hart, J. A. Schweitzer & G. W. Koch, 2013. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PloS One 8: e62671.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Clarke, S. J. & G. Wharton, 2001. Sediment nutrient characteristiccs and aquatic macrophytes in lowland English rivers. The Science of the Total Environment 266: 103–112.CrossRefPubMedGoogle Scholar
  9. Costantini, M. L., L. Rossi, S. Fazi & D. Rossi, 2009. Detritus accumulation and decomposition in a coastal lake (Acquatina-southern Italy). Aquatic Conservation: Marine and Freshwater Ecosystems 19: 566–574.CrossRefGoogle Scholar
  10. Dang, C. K., M. Schindler, E. Chauvet & M. O. Gessner, 2009. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 90: 122–131.CrossRefPubMedGoogle Scholar
  11. Debusk, W. F. & K. R. Reddy, 2005. Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochemistry 75: 217–240.CrossRefGoogle Scholar
  12. Federle, T. W., V. L. Mckinley & J. R. Vestal, 1982. Effects of nutrient enrichment on the colonization and decomposition of plant detritus by the microbiota of an arctic lake. Canadian Journal of Microbiology 28: 1199–1205.CrossRefGoogle Scholar
  13. Ferreiro, N. A., A. Giorgi, L. Leggieri, C. Feijoó & C. Vilches, 2011. Phosphorus enrichment affects immobilization but not litter decomposition or exoenzymatic activities in a pampean stream. International Review of Hydrobiology 96: 209–220.CrossRefGoogle Scholar
  14. Gudasz, C., S. Sobek, D. Bastviken, B. Koehler & L. J. Tranvik, 2015. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments. Journal of Geophysical Research: Biogeosciences 120: 1215–1225.Google Scholar
  15. Heal, O. W., J. M. Anderson & M. J. Swift, 1997. Plant litter quality and decomposition: an historical overview. In Cadish, G. & K. E. Giller (eds), Driven by nature plant litter quality and decomposition. CAB International, Wallingford: 3–30.Google Scholar
  16. Hoorens, B., R. Aerts & M. Stroetenga, 2003. Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137: 578–586.CrossRefPubMedGoogle Scholar
  17. Jonsson, M. & D. A. Wardle, 2008. Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence. Oikos 117: 1674–1682.CrossRefGoogle Scholar
  18. Kominoski, J. S., C. M. Pringle, B. A. Ball, M. A. Bradford & D. C. Coleman, 2007. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88: 1167–1176.CrossRefPubMedGoogle Scholar
  19. Lan, Y., B. Cui, Z. You, X. Li, Z. Han, Y. Zhang & Y. Zhang, 2012. Litter decomposition of six macrophytes in a eutrophic shallow lake (Baiyangdian Lake, China). Clean - Soil, Air, Water 40: 1159–1166.CrossRefGoogle Scholar
  20. Lecerf, A., G. Marie, J. S. Kominoski, C. J. LeRoy, C. Bernadet & C. M. Swan, 2011. Incubation time, functional litter diversity, and habital characteristics predict litter mixing effects on decomposition. Ecology 92: 160–169.CrossRefPubMedGoogle Scholar
  21. Lemley, D. A., G. C. Snow & L. R. D. Human, 2014. The decomposition of estuarine macrophytes under different temperature regimes. Water SA 40: 117–124.CrossRefGoogle Scholar
  22. Li, C., B. Wang, C. Ye & Y. Ba, 2014. The release of nitrogen and phosphorus during the decomposition process of submerged macrophyte (Hydrilla verticillata Royle) with different biomass levels. Ecological Engineering 70: 268–274.CrossRefGoogle Scholar
  23. Li, X., B. Cui, Q. Yang, H. Tian, Y. Lan, T. Wang & Z. Han, 2012. Detritus quality controls macrophyte decomposition under different nutrient concentrations in a eutrophic shallow lake, North China. PloS One 7: e42042.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li, X., B. Cui, Q. Yang, Y. Lan, T. Wang & Z. Han, 2013. Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake, North China. Ecological Modelling 252: 121–128.CrossRefGoogle Scholar
  25. Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: Organic matter and nutrient decay and associated benthic processes. Aquatic Botany 89: 303–310.CrossRefGoogle Scholar
  26. Murray, L. G., S. M. Mudge, A. Newton & J. D. Icely, 2006. The effect of benthic sediments on dissolved nutrient concentrations and fluxes. Biogeochemistry 81: 159–178.CrossRefGoogle Scholar
  27. Pagioro, T. A. & S. M. Thomaz, 1999. Decomposition of Eichhornia azurea from limnologically different environments of the upper Parana river floodplain. Hydrobiologia 411: 45–51.CrossRefGoogle Scholar
  28. Paul, E. A. & F. E. Clark, 1989. Soil microbiology and biochemistry. Academic Press, San Diego: 5–10.Google Scholar
  29. Rejmánková, E. & K. Houdková, 2006. Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality? Biogeochemistry 80: 245–262.CrossRefGoogle Scholar
  30. Rosemond, A. D., C. M. Swan, J. S. Kominoski & S. E. Dye, 2010. Non-additive effects of litter mixing are suppressed in a nutrient-enriched stream. Oikos 119: 326–336.CrossRefGoogle Scholar
  31. Royer, T. V. & G. W. Minshall, 2001. Effects of nutrient enrichment and leaf quality on the breakdown of leaves in a hardwater stream. Freshwater Biology 46: 603–610.CrossRefGoogle Scholar
  32. Song, N., Z. S. Yan, H. Y. Cai & H. L. Jiang, 2013. Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake. Hydrobiologia 714: 131–144.CrossRefGoogle Scholar
  33. Villar, C. A., L. de Cabo, P. Vaithiyanathan & C. Bonetto, 2001. Litter decomposition of emergent macrophytes in a floodplain marsh of the Lower Parana’ River. Aquatic Botany 70: 105–116.CrossRefGoogle Scholar
  34. Yu, H., C. Ye, X. Song & J. Liu, 2010. Comparative analysis of growth and physio-biochemical responses of Hydrilla verticillata to different sediments in freshwater microcosms. Ecological Engineering 36: 1285–1289.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Province Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and EnvironmentHubei UniversityWuhanChina
  2. 2.Wildlife Conservation Chief Station of Hubei ProvinceWuhanChina
  3. 3.School of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianningChina

Personalised recommendations