Skip to main content
Log in

Effects of sediment-borne nutrient and litter quality on macrophyte decomposition and nutrient release

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macrophyte decomposition is a critical process that affects carbon and nutrient cycling, and energy flow, although the majority of the details involved in the process remain unclear. For the present study, a litter bag experiment was conducted to investigate the effects of sediment-borne nutrient and litter quality on the decomposition rates and nutrient release of four macrophyte life forms (emergent macrophyte: Phragmites australis, free-floating macrophyte: Hydrocharis dubia, floating-leaved macrophyte: Nymphoides peltata, submerged macrophyte: Ceratophyllum demersum), and a species mixture. Our results indicated that litter quality significantly influenced macrophyte decomposition and nutrient release. High-quality litter species (high initial nitrogen and phosphorus contents, as well as low C:N, C:P, and N:P ratios) decomposed more rapidly than low-quality litter species, and the initial C:N and C:P ratios, rather than the initial N and P contents, were effective indicators of the decomposition rate of macrophytes. Sediment-borne nutrients had little effect on the decomposition rate, yet a strong effect on the release of N and P, although the interactions between litter quality and sediment-borne nutrients significantly affected the decomposition rate. Three-way ANOVA analysis revealed that the litter quality imparted a more potent effect on the macrophyte decomposition rate and release of N and P than sediment-borne nutrients. These results implied that litter quality interacts with sediment-borne nutrients and may control macrophyte decomposition in shallow lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Abelho, M., 2009. Leaf-litter mixtures affect breakdown and macroinvertebrate colonization rates in a stream ecosystem. International Review of Hydrobiology 94: 436–451.

    Article  Google Scholar 

  • Berglund, S. L. & G. I. Ågren, 2012. When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos 121: 1112–1120.

    Article  Google Scholar 

  • Bianchini Jr., I., M. B. Cunha-Santino & A. M. Perte, 2008. Oxygen demand during mineralization of aquatic macrophytes from an oxbow lake. Brazilian Journal of Biology 68: 61–67.

    Article  Google Scholar 

  • Canfield, D. E., B. Thamdrup & E. Kristensen, 2005. Aquatic geimicobiology. Advances in marine biology, Vol. 48. Elsevier, Amsterdam: 424.

    Google Scholar 

  • Carvalho, P., S. M. Thomaz & L. M. Bini, 2005. Effects of temperature on decomposition of a potential nuisance species: the submerged aquatic macrophyte Egria najas Planchon (Hydrocharitaceae). Brazilian Journal of Biology 65: 51–60.

    Article  CAS  Google Scholar 

  • Chapman, K. J., J. B. Whittaker & O. W. Heal, 1988. Metabolic and faunal activity in litters of tree mixtures compared with pure stands. Agriculture Ecosystems & Environment 11: 33–40.

    Article  Google Scholar 

  • Chapman, S. K., G. S. Newman, S. C. Hart, J. A. Schweitzer & G. W. Koch, 2013. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PloS One 8: e62671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke, S. J. & G. Wharton, 2001. Sediment nutrient characteristiccs and aquatic macrophytes in lowland English rivers. The Science of the Total Environment 266: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Costantini, M. L., L. Rossi, S. Fazi & D. Rossi, 2009. Detritus accumulation and decomposition in a coastal lake (Acquatina-southern Italy). Aquatic Conservation: Marine and Freshwater Ecosystems 19: 566–574.

    Article  Google Scholar 

  • Dang, C. K., M. Schindler, E. Chauvet & M. O. Gessner, 2009. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 90: 122–131.

    Article  PubMed  Google Scholar 

  • Debusk, W. F. & K. R. Reddy, 2005. Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochemistry 75: 217–240.

    Article  Google Scholar 

  • Federle, T. W., V. L. Mckinley & J. R. Vestal, 1982. Effects of nutrient enrichment on the colonization and decomposition of plant detritus by the microbiota of an arctic lake. Canadian Journal of Microbiology 28: 1199–1205.

    Article  CAS  Google Scholar 

  • Ferreiro, N. A., A. Giorgi, L. Leggieri, C. Feijoó & C. Vilches, 2011. Phosphorus enrichment affects immobilization but not litter decomposition or exoenzymatic activities in a pampean stream. International Review of Hydrobiology 96: 209–220.

    Article  CAS  Google Scholar 

  • Gudasz, C., S. Sobek, D. Bastviken, B. Koehler & L. J. Tranvik, 2015. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments. Journal of Geophysical Research: Biogeosciences 120: 1215–1225.

    CAS  Google Scholar 

  • Heal, O. W., J. M. Anderson & M. J. Swift, 1997. Plant litter quality and decomposition: an historical overview. In Cadish, G. & K. E. Giller (eds), Driven by nature plant litter quality and decomposition. CAB International, Wallingford: 3–30.

    Google Scholar 

  • Hoorens, B., R. Aerts & M. Stroetenga, 2003. Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137: 578–586.

    Article  PubMed  Google Scholar 

  • Jonsson, M. & D. A. Wardle, 2008. Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence. Oikos 117: 1674–1682.

    Article  Google Scholar 

  • Kominoski, J. S., C. M. Pringle, B. A. Ball, M. A. Bradford & D. C. Coleman, 2007. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88: 1167–1176.

    Article  CAS  PubMed  Google Scholar 

  • Lan, Y., B. Cui, Z. You, X. Li, Z. Han, Y. Zhang & Y. Zhang, 2012. Litter decomposition of six macrophytes in a eutrophic shallow lake (Baiyangdian Lake, China). Clean - Soil, Air, Water 40: 1159–1166.

    Article  CAS  Google Scholar 

  • Lecerf, A., G. Marie, J. S. Kominoski, C. J. LeRoy, C. Bernadet & C. M. Swan, 2011. Incubation time, functional litter diversity, and habital characteristics predict litter mixing effects on decomposition. Ecology 92: 160–169.

    Article  PubMed  Google Scholar 

  • Lemley, D. A., G. C. Snow & L. R. D. Human, 2014. The decomposition of estuarine macrophytes under different temperature regimes. Water SA 40: 117–124.

    Article  Google Scholar 

  • Li, C., B. Wang, C. Ye & Y. Ba, 2014. The release of nitrogen and phosphorus during the decomposition process of submerged macrophyte (Hydrilla verticillata Royle) with different biomass levels. Ecological Engineering 70: 268–274.

    Article  Google Scholar 

  • Li, X., B. Cui, Q. Yang, H. Tian, Y. Lan, T. Wang & Z. Han, 2012. Detritus quality controls macrophyte decomposition under different nutrient concentrations in a eutrophic shallow lake, North China. PloS One 7: e42042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., B. Cui, Q. Yang, Y. Lan, T. Wang & Z. Han, 2013. Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake, North China. Ecological Modelling 252: 121–128.

    Article  CAS  Google Scholar 

  • Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: Organic matter and nutrient decay and associated benthic processes. Aquatic Botany 89: 303–310.

    Article  CAS  Google Scholar 

  • Murray, L. G., S. M. Mudge, A. Newton & J. D. Icely, 2006. The effect of benthic sediments on dissolved nutrient concentrations and fluxes. Biogeochemistry 81: 159–178.

    Article  CAS  Google Scholar 

  • Pagioro, T. A. & S. M. Thomaz, 1999. Decomposition of Eichhornia azurea from limnologically different environments of the upper Parana river floodplain. Hydrobiologia 411: 45–51.

    Article  Google Scholar 

  • Paul, E. A. & F. E. Clark, 1989. Soil microbiology and biochemistry. Academic Press, San Diego: 5–10.

    Google Scholar 

  • Rejmánková, E. & K. Houdková, 2006. Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality? Biogeochemistry 80: 245–262.

    Article  Google Scholar 

  • Rosemond, A. D., C. M. Swan, J. S. Kominoski & S. E. Dye, 2010. Non-additive effects of litter mixing are suppressed in a nutrient-enriched stream. Oikos 119: 326–336.

    Article  Google Scholar 

  • Royer, T. V. & G. W. Minshall, 2001. Effects of nutrient enrichment and leaf quality on the breakdown of leaves in a hardwater stream. Freshwater Biology 46: 603–610.

    Article  CAS  Google Scholar 

  • Song, N., Z. S. Yan, H. Y. Cai & H. L. Jiang, 2013. Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake. Hydrobiologia 714: 131–144.

    Article  CAS  Google Scholar 

  • Villar, C. A., L. de Cabo, P. Vaithiyanathan & C. Bonetto, 2001. Litter decomposition of emergent macrophytes in a floodplain marsh of the Lower Parana’ River. Aquatic Botany 70: 105–116.

    Article  Google Scholar 

  • Yu, H., C. Ye, X. Song & J. Liu, 2010. Comparative analysis of growth and physio-biochemical responses of Hydrilla verticillata to different sediments in freshwater microcosms. Ecological Engineering 36: 1285–1289.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31270261) and (31570366).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohui Cai or Zhongqiang Li.

Additional information

Handling editor: Chris Joyce

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Hao, T., Deng, X. et al. Effects of sediment-borne nutrient and litter quality on macrophyte decomposition and nutrient release. Hydrobiologia 787, 205–215 (2017). https://doi.org/10.1007/s10750-016-2961-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2961-x

Keywords

Navigation