, Volume 782, Issue 1, pp 127–143 | Cite as

Environmental factors affecting the balance of autotrophs versus heterotrophs in the microbial food web of temporary ponds

  • Núria Àvila
  • Rocio López-Flores
  • Dani Boix
  • Stéphanie Gascón
  • Xavier D. Quintana


The relative abundance of autotrophic (A) and heterotrophic (H) organisms in the microbial food web of temporary ponds and its relationship to environmental variables were analysed. Four localities (43 temporary ponds) were selected for study. They were located in unaltered, protected basins without intensive agriculture or strong human pressure. Because the supply of allochthonous organic matter is expected to be higher than inorganic nutrient inputs in temporary ponds, we hypothesized that the microbial food web in these unaltered basins was dominated by heterotrophic organisms. Our results showed that the log A:H biomass ratio (A/H) was always negative, indicating strong dominance by heterotrophic organisms in these ponds. Moreover, A/H was negatively related to DOC concentrations, but this relationship was weaker in the locality with the highest DOC concentration. No significant relationships were found between A/H and the other environmental variables analysed, namely inorganic nutrients, fulvic acids, chlorophyll-a concentrations, macrophyte biomass or total zooplankton biomass. However, when the different groups of zooplankton were considered separately, A/H correlated negatively with cladoreran biomass and positively with harpacticoid biomass. Thus, temporary ponds differ from deeper ecosystems, in which the greater importance of autochthonous energy inputs leads to microbial food web that is more dominated by autotrophs.


Phytoplankton Bacterioplankton Shallow lakes Temporary waters Dissolved organic carbon Compositional data analysis 



We want to thank the “Departamento de Conservação da Natureza e Florestas do Algarve”, the “Departament d’Agricultura, Ramaderia Pesca, Alimentació i Medi Natural”, the Empordà Wetlands Natural Park and the Authorities of the “Base Militar General Álvarez de Castro” for the permissions to perform our study in the ponds under their management. We also want to thank Simonetta Bagella, Luis Cancela da Fonseca, Maria Carmela Caria, Jordi Compte, Helena Costa, Laura Guirado, Margarida Machado, Albert Ruhí and Lluís Zamora for field assistance. The first author held a PhD grant from the University of Girona (BR2012/02). The financial support was provided by “Ministerio de Ciencia e Innovación” (CGL2011-23907) and the Generalitat de Catalunya (Ref. 2014 SGR 484).


  1. Aitchison, J., 1986. The Statistical Analysis of Compositional Data. Chapman & Hall, London.CrossRefGoogle Scholar
  2. Aitchison, J. & J. J. Egozcue, 2005. Compositional data analysis: where are we and where should we be heading? Mathematical Geology 37(7): 829–850.CrossRefGoogle Scholar
  3. Aitkenhead-Peterson, J., W. McDowell, J. Neff, E. Stuart & L. Robert, 2003. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. Findlay, S. E. G., Sinsabaugh, R. L., (Eds), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, pp. 25–70.Google Scholar
  4. Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47(4): 761–776. .CrossRefGoogle Scholar
  5. Amoros, C. & A. Roux, 1988. Interaction between water bodies within the floodplains of large rivers: function and development of connectivity. Münstersche Geographische Arbeiten 29(1): 125–130.Google Scholar
  6. Andersen, P. & J. Throndsen, 2003. Estimating cell numbers. Manual on harmful marine microalgae 4: 99–129.Google Scholar
  7. Apple, J. K. & P. Del Giorgio, 2007. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary. The ISME Journal 1(8): 729–742.PubMedCrossRefGoogle Scholar
  8. Azam, F., 1998. Microbial control of oceanic carbon flux: the plot thickens. Science 280(5364): 694–696.CrossRefGoogle Scholar
  9. Belnap, J., J. R. Welter, N. B. Grimm, N. Barger & J. A. Ludwig, 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86(2): 298–307.CrossRefGoogle Scholar
  10. Ballón, C., N. Àvila, D. Boix, R. López-Flores, S. Romo, J. Sala, X. D. Quintana & S. Gascón, 2016. Is ecosystem size more important than locality in determining the environmental characteristics of temporary ponds? Limnetica 35(1): 73–88.Google Scholar
  11. Biddanda, B., M. Ogdahl & J. Cotner, 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography 46(3): 730–739.CrossRefGoogle Scholar
  12. Boix, D. J., X. Sala, X. Quintana & R. Moreno-Amich, 2004. Succession of the animal community in a mediterranean temporary pond. Journal of North American Benthological Society 23(1): 29–49.CrossRefGoogle Scholar
  13. Bottrell, H., 1976. A review of some problems in zooplankton production studies. Norw J Zool 24: 419–456.Google Scholar
  14. Brucet, S., J. Compte, D. Boix, R. López-Flores & X. D. Quintana, 2008. Feeding of nauplii, copepodites and adults of Calanipeda aquaedulcis (Calanoida) in Mediterranean salt marshes. Marine Ecology-Progress Series 355: 183–191.CrossRefGoogle Scholar
  15. Carpenter, S. R., J. J. Cole, J. F. Kitchell & M. L. Pace, 1998. Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnology and Oceanography 43(1): 73–80.CrossRefGoogle Scholar
  16. Catalán, N., O. Sala & J. L. Biel Pretus Real, 2013. Sources, transformations and controls of dissolved organic matter (DOM) in a Mediterranean catchment = Fonts, transformacions i controls de la matèria orgànica dissolta (DOM) a una conca Mediterrània.Google Scholar
  17. Cattaneo, A., G. Galanti, S. Gentinetta & S. Romo, 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39(4): 725–740.CrossRefGoogle Scholar
  18. Cellamare, M., A. M. Lançon, M. Leitão, L. Cerasino, U. Obertegger & G. Flaim, 2016. Phytoplankton functional response to spatial and temporal differences in a cold and oligotrophic lake. Hydrobiologia 764(1): 199–209.CrossRefGoogle Scholar
  19. Cho, B. C. & F. Azam, 1988. Major role of bacteria in biogeochemical fluxes in the oceans interior. Nature 332(6163): 441–443.CrossRefGoogle Scholar
  20. Clarke, K. R. & R. N. Gorley, 2001. PRIMER v5: User Manual and Tutorial. PRIMER-E, Plymouth.Google Scholar
  21. Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43(1–2): 1–10.CrossRefGoogle Scholar
  22. Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5(2): 105–121.CrossRefGoogle Scholar
  23. D’Amore, D. V., J. B. Fellman, R. T. Edwards & E. Hood, 2010. Controls on dissolved organic matter concentrations in soils and streams from a forested wetland and sloping bog in southeast Alaska. Ecohydrology 3(3): 249–261.CrossRefGoogle Scholar
  24. De Carvalho, C. & M. J. Caramujo, 2014. Fatty acids as a tool to understand microbial diversity and their role in food webs of mediterranean temporary ponds. Molecules 19(5): 5570–5598.PubMedCrossRefGoogle Scholar
  25. Del Giorgio, P. A. & J. M. Gasol, 1995. Biomass distribution in freshwater plankton communities. The American Naturalist 146(1): 135–152.CrossRefGoogle Scholar
  26. Del Giorgio, P. A. & R. H. Peters, 1993. Balance between phytoplankton production and plankton respiration in lakes. Canadian Journal of Fisheries and Aquatic Sciences 50(2): 282–289.CrossRefGoogle Scholar
  27. Del Giorgio, P. A., J. J. Cole & A. Cimbleris, 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385(6612): 148–151.CrossRefGoogle Scholar
  28. Del Giorgio, P. A., J. J. Cole, N. F. Caraco & R. H. Peters, 1999. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 80(4): 1422–1431.CrossRefGoogle Scholar
  29. Demarty, M. & Y. T. Prairie, 2009. In situ dissolved organic carbon (DOC) release by submerged macrophyte-epiphyte communities in southern Quebec lakes. Canadian Journal of Fisheries and Aquatic Sciences 66(9): 1522–1531.CrossRefGoogle Scholar
  30. Dortch, Q. & T. T. Packard, 1989. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems. Deep-Sea Research Part a-Oceanographic Research Papers 36(2): 223–240.CrossRefGoogle Scholar
  31. Dussart, B. H. & D. Defaye, 1995. Copepoda: Introduction to the Copepoda. SPB Academic Publishing, The Hague. 277 pp.Google Scholar
  32. Fellman, J. B., E. Hood, D. V. D’Amore, R. T. Edwards & D. White, 2009. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 95(2–3): 277–293.CrossRefGoogle Scholar
  33. Fernandes, V., N. Ramaiah, J. T. Paul, S. Sardessai, R. J. Babu & M. Gauns, 2008. Strong variability in bacterioplankton abundance and production in central and western Bay of Bengal. Mar Biol 153(5): 975–985.CrossRefGoogle Scholar
  34. Flößner, D., 1997. Crustacea: Copepoda: Gelyelloida und Harpacticoida. Von Wolfgang Janetzky, Rosemarie Enderle, Wolfram Noodt Süßwasserfauna von Mitteleuropa Band 8/4‐2. Gustav Fischer Verlag, Stuttgart, 1996, ISBN 3‐437‐30741‐X, 228 S., kart., DM 220,–. Acta hydrochimica et hydrobiologica 25(6):339–340.Google Scholar
  35. Francko, D. A., 1986. Epilimnetic phosphorus cycling: influence of humic materials and iron on coexisting major mechanisms. Canadian Journal of Fisheries and Aquatic Sciences 43(2): 302–310.CrossRefGoogle Scholar
  36. Gaedke, U., A. Seifried & R. Adrian, 2004. Biomass size spectra and plankton diversity in a shallow eutrophic lake. International Review of Hydrobiology 89(1): 1–20.CrossRefGoogle Scholar
  37. Gan, D., S. I. Kotob & D. S. Walia, 2007. Evaluation of a spectrophotometric method for practical and cost effective quantification of fulvic acid. Annals of Environmental Science 1(1): 10.Google Scholar
  38. Garnier, J. & D. Benest, 1990. Seasonal coupling between phytoplankton and bacterioplankton in a sand pit lake (Créteil lake, France). Hydrobiologia 207: 71–77.CrossRefGoogle Scholar
  39. Gascón, S., D. Boix, J. Sala & X. D. Quintana, 2008. Relation between macroinvertebrate life strategies and habitat traits in Mediterranean salt marsh ponds (Empordà wetlands, NE Iberian Peninsula). Hydrobiologia 597: 71–83.CrossRefGoogle Scholar
  40. Gasol, J. M., P. A. del Giorgio & C. M. Duarte, 1997. Biomass distribution in marine planktonic communities. Limnology and Oceanography 42(6): 1353–1363.CrossRefGoogle Scholar
  41. Glibert, P. M., J. Boyer, C. Heil, C. Madden, B. Sturgis & C. Wazniak, 2010. Blooms in Lagoons: different from those of river-dominated estuaries. Coastal Lagoons: Critical Habitats of Environmental Change 91–114.Google Scholar
  42. Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Weinheim.Google Scholar
  43. Hansell, D. A. & C. A. Carlson, 1998. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395(6699): 263–266.CrossRefGoogle Scholar
  44. Hautala, K., J. Peuravuori & K. Pihlaja, 2000. Measurement of aquatic humus content by spectroscopic analyses. Water Research 34(1): 246–258.CrossRefGoogle Scholar
  45. Hessen, D. O., 1992. Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia 229: 115–123.CrossRefGoogle Scholar
  46. Jackson, T. A. & R. E. Hecky, 1980. Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can J Fish Aquat Sci 37(12): 2300–2317.CrossRefGoogle Scholar
  47. Jansson, M., 1993. Uptake, exchange and excretion of orthophosphate in phosphate-starved Scenedesmus quadricauda and Pseudomonas K7. Limnology and Oceanography 38(6): 1162–1178.CrossRefGoogle Scholar
  48. Jansson, M., P. Blomqvist, A. Jonsson & A. K. Bergstrom, 1996. Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Ortrasket. Limnology and Oceanography 41(7): 1552–1559.CrossRefGoogle Scholar
  49. Johnstone, R. A., 1995. Sexual selection, honest advertisement and the handicap principle: reviewing the evidence. Biological Reviews of the Cambridge Philosophical Society 70(1): 1–65.PubMedCrossRefGoogle Scholar
  50. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  51. Kissman, C. E., C. E. Williamson, K. C. Rose & J. E. Saros, 2013. Response of phytoplankton in an alpine lake to inputs of dissolved organic matter through nutrient enrichment and trophic forcing. Limnology and Oceanography 58(3): 867–880.CrossRefGoogle Scholar
  52. Klug, J. L., 2002. Positive and negative effects of allochthonous dissolved organic matter and inorganic nutrients on phytoplankton growth. Canadian Journal of Fisheries and Aquatic Sciences 59(1): 85–95.CrossRefGoogle Scholar
  53. Knoppers, B., 1994. Aquatic primary production in coastal lagoons. Elsevier Oceanography Series 60: 243–286.CrossRefGoogle Scholar
  54. Kopylov, A., D. Kosolapov, A. Romanenko & A. Degermendzhy, 2002. Structure of planktonic microbial food web in a brackish stratified Siberian lake. Aquatic Ecology 36(2): 179–204.CrossRefGoogle Scholar
  55. Kritzberg, E. S., J. J. Cole, M. M. Pace & W. Granéli, 2006. Bacterial growth on allochthonous carbon in humic and nutrient-enriched lakes: results from whole-lake 13C addition experiments. Ecosystems 9(3): 489–499.CrossRefGoogle Scholar
  56. Lopez-Flores, R., D. Boix, A. Badosa, S. Brucet & X. D. Quintana, 2006. Pigment composition and size distribution of phytoplankton in a confined Mediterranean salt marsh ecosystem. Marine Biology 149(6): 1313–1324.CrossRefGoogle Scholar
  57. Lopez-Flores, R., D. Boix, A. Badosa, S. Brucet & X. D. Quintana, 2009. Environmental factors affecting bacterioplankton and phytoplankton dynamics in confined Mediterranean salt marshes (NE Spain). Journal of Experimental Marine Biology and Ecology 369(2): 118–126.CrossRefGoogle Scholar
  58. Lv, J., H. Wu & M. Chen, 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica-Ecology and Management of Inland Waters 41(1): 48–56.CrossRefGoogle Scholar
  59. Malley, D. F., C. D. O. Fisheries, O. Central & A. Region, 1989. Range of Variation in Estimates of Dry Weight for Planktonic Crustacea and Rotifera from Temperate North American Lakes. Fisheries and Oceans, Canada.Google Scholar
  60. Mayer, J., M. T. Dokulil, M. Salbrechter, M. Berger, T. Posch, G. Pfister, A. K. T. Kirschner, B. Velimirov, A. Steitz & T. Ulbricht, 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342: 165–174.CrossRefGoogle Scholar
  61. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. A manual on methods for the assessment of secondary productivity in fresh waters, pp. 228–265.Google Scholar
  62. Mitsch, W. & J. Gosselink, 1993. WetlandsSecond Edition. Van Nostrand Reinhold, New York.Google Scholar
  63. Moyá, G. & V. Conforti, Cyanobacteria and microalgae communities in temporary ponds. In: International Conference on Mediterranean Temporary Ponds Proceedings & Abstracts Consell Insular de Menorca Recerca, 2009. vol 14. p 95-106.Google Scholar
  64. Mulholland, P., 2002. Large-Scale Patterns in Dissolved Organic Carbon Concentration, Flux, and Sources. Academic Press/Elsevier Science, New York.Google Scholar
  65. Naselli-Flores, L. & R. Barone, 2002. Limnology of a small, temporary water body: the Pond of Santa Rosalia (Sicily, Italy). In Wetzel, R. G. (ed.), International Association of Theoretical and Applied Limnology, Vol. 28, Pt 4, Proceedings. International Association of Theoretical and Applied Limnology – Proceedings, Vol. 28: 1673–1677.Google Scholar
  66. Naselli-Flores, L. & R. Barone, 2012. Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698(1): 147–159.CrossRefGoogle Scholar
  67. Navarro, M. A. B. & B. E. Modenutti, 2012. Precipitation patterns, dissolved organic matter and changes in the plankton assemblage in Lake Escondido (Patagonia, Argentina). Hydrobiologia 691(1): 189–202.CrossRefGoogle Scholar
  68. Nejstgaard, J. C., I. Gismervik & P. T. Solberg, 1997. Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series 147(1–3): 197–217.CrossRefGoogle Scholar
  69. Odum, E. P., H. T. Odum & J. Andrews, 1971. Fundamentals of Ecology, Vol. 3. Saunders, Philadelphia.Google Scholar
  70. Oni, S. K., M. N. Futter & P. J. Dillon, 2011. Landscape-scale control of carbon budget of Lake Simcoe: a process-based modelling approach. Journal of Great Lakes Research 37: 160–165.CrossRefGoogle Scholar
  71. Ozimek, T., E. Van Donk & R. D. Gulati, 1993. Growth and nutrient uptake by two species of Elodea in experimental conditions and their role in nutrient accumulation in a macrophyte-dominated lake. Nutrient Dynamics and Retention in Land/Water Ecotones of Lowland, Temperate Lakes and Rivers. Springer, Berlin, pp. 13–18.Google Scholar
  72. Pawlowsky-Glahn, V. & A. Buccianti, 2011. Compositional Data Analysis: Theory and Applications. Wiley, New York.CrossRefGoogle Scholar
  73. Pearson, K., 1897. Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London LX:489–502.Google Scholar
  74. Pereira, H. C., N. Allott & C. Coxon, 2010. Are seasonal lakes as productive as permanent lakes? A case study from Ireland. Canadian Journal of Fisheries and Aquatic Sciences 67(8): 1291–1302.CrossRefGoogle Scholar
  75. Portielje, R. & D. T. Van der Molen, 1999. Relationships between eutrophication variables: from nutrient loading to transparency. Hydrobiologia 408: 375–387.CrossRefGoogle Scholar
  76. Ptacnik, R., T. Andersen & T. Tamminen, 2010. Performance of the redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs. P limitation. Ecosystems 13(8): 1201–1214.CrossRefGoogle Scholar
  77. Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon: volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnology and Oceanography 34(6): 1097–1103.CrossRefGoogle Scholar
  78. R Development Core Team R. 2015. A language and environment for statistical computing. R Foundationfor Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  79. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Archives Hydrobiology Beih Ergebn Limnology 8(7): 1–76.Google Scholar
  80. Salonen, K., P. Kankaala, T. Tulonen, T. Hammar, M. James, T. R. Metsala & L. Arvola, 1992. Planktonic food-chains of a highly humic lake.2. A mesocosm experiment in summer during dominance of heterotrophic processes. Hydrobiologia 229: 143–157.CrossRefGoogle Scholar
  81. Sanders, R. W., D. A. Caron & U. G. Berninger, 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Marine Ecology-Progress Series 86(1): 1–14.CrossRefGoogle Scholar
  82. Sanders, R. W. & S. A. Wickham, 1993. Planktonic protozoa and metazoa: predation, food quality and population control. Aquatic Microbial Ecology 7(2): 197–223.Google Scholar
  83. Scheffer, M., 1998. Ecology of Shalow Lakes. Chapman & Hall, London.Google Scholar
  84. Schönborn, W., 1992. Fließgewasserbiologie. G. Fischer.Google Scholar
  85. Seekell, D. A., J.-F. Lapierre & J. Karlsson, 2015. Trade-offs between light and nutrient availability across gradients of dissolved organic carbon concentration in Swedish lakes: implications for patterns in primary production. Canadian Journal of Fisheries and Aquatic Sciences 72(999): 1–9.Google Scholar
  86. Sherr, E. B. & B. F. Sherr, 1996. Temporal offset in oceanic production and respiration processes implied by seasonal changes in atmospheric oxygen: the role of heterotrophic microbes. Aquatic Microbial Ecology 11(1): 91–100.CrossRefGoogle Scholar
  87. Simon, M., B. C. Cho & F. Azam, 1992. Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications. Marine Ecology-Progress Series 86(2): 103–110.CrossRefGoogle Scholar
  88. Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100(1–3): 179–196.PubMedCrossRefGoogle Scholar
  89. Solomon, C. T., S. E. Jones, B. C. Weidel, I. Buffam, M. L. Fork, J. Karlsson, S. Larsen, J. T. Lennon, J. S. Read, S. Sadro & J. E. Saros, 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18(3): 376–389.CrossRefGoogle Scholar
  90. Stoecker, D. K. & D. A. Egloff, 1987. Predation by Acartia-tonsa Dana on planktonic cliliates and rotifers. Journal of Experimental Marine Biology and Ecology 110(1): 53–68.CrossRefGoogle Scholar
  91. Schumann, R., A. Hammer, S. Görs & H. Schubert, 2005. Winter and spring phytoplankton composition and production in a shallow eutrophic Baltic lagoon. Estuarine, Coastal and Shelf Science 62(1): 169–181.CrossRefGoogle Scholar
  92. Sun, J. & D. Y. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of plankton Research 25(11): 1331–1346.CrossRefGoogle Scholar
  93. Tanner, J., 1949. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. Journal of Applied Physiology 2(1): 1–15.PubMedGoogle Scholar
  94. Temponeras, M., J. Kristiansen & M. Moustaka-Gouni, 2000. Seasonal variation in phytoplankton composition and physical-chemical features of the shallow Lake Doïrani, Macedonia, Greece. Hydrobiologia 424(1–3): 109–122.CrossRefGoogle Scholar
  95. Tockner, K., D. Pennetzdorfer, N. Reiner, F. Schiemer & J. V. Ward, 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river–floodplain system (Danube, Austria). Freshwater Biology 41(3): 521–535.CrossRefGoogle Scholar
  96. Tranvik, L. J., 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Dissolved organic matter in lacustrine ecosystems. Springer, Berlin: 107–114.Google Scholar
  97. Troussellier, M., C. Courties, P. Lebaron & P. Servais, 1999. Flow cytometric discrimination of bacterial populations in seawater based on SYTO 13 staining of nucleic acids. FEMS Microbiology Ecology 29(4): 319–330.CrossRefGoogle Scholar
  98. Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitt int Ver Theor Angew Limnology 9: 1–38.Google Scholar
  99. Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh & K. Foreman, 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42(5): 1105–1118.CrossRefGoogle Scholar
  100. Villar-Argaiz, M., J. M. Medina-Sánchez, L. Cruz-Pizarro & P. Carrillo, 2001. Inter-and intra-annual variability in the phytoplankton community of a high mountain lake: the influence of external (atmospheric) and internal (recycled) sources of phosphorus. Freshwater Biology 46(8): 1017–1034.CrossRefGoogle Scholar
  101. Weinbauer, M. G. & P. Peduzzi, 1995. Significance of viruses versus heterotrophic nanofiagellates for controlling bacterial abundance in the northern Adriatic Sea. Journal of Plankton Research 17(9): 1851–1856.CrossRefGoogle Scholar
  102. Wetzel, R. G., 1992. Gradient -dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198..CrossRefGoogle Scholar
  103. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Gulf Professional, Houston.Google Scholar
  104. Williams, C. J., Y. Yamashita, H. F. Wilson, R. Jaffe & M. A. Xenopoulos, 2010. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnology and Oceanography 55(3): 1159–1171.CrossRefGoogle Scholar
  105. Zapata, M., F. Rodriguez & J. L. Garrido, 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C-8 column and pyridine-containing mobile phases. Marine Ecology-Progress Series 195: 29–45.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.GRECO, Institute of Aquatic Ecology, Faculty of SciencesUniversity of GironaGironaSpain
  2. 2.Área de Ecología, Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Instituto de Investigación en Ciencias Ambientales (IUCA)Universidad de ZaragozaHuescaSpain

Personalised recommendations