, Volume 782, Issue 1, pp 155–168 | Cite as

Hydrological regime and modeling of three ponds of the Mediterranean area (south of Córdoba, Spain)

  • Miguel Rodríguez-Rodríguez
  • Ana Fernández
  • Francisco Moral


In this investigation, hydrological time series of three ponds located in the province of Córdoba (southern Spain) at a daily scale has been analyzed. For the first time, a detailed evolution of the water level of Jarales, Conde, and Amarga ponds has been acquired by means of the installation of level loggers in the deepest point of each of the ponds. We have modeled the water level evolution using a simple one-dimensional model. Calibration of the model was very satisfactory in two of the ponds. The model was then setup and simulated for two future Scenarios: A (IPCC climate change scenario) and B (climate change + groundwater withdrawal within the basin). Two ponds were classified as discharge ponds, which are the hydrological regime of the majority of southern Spain’s continental ponds. One was classified as a recharge pond. With regard to the results obtained in the simulations for Scenarios A and B, our results showed that IPCC scenario will reduce hydroperiod significantly in the three ponds, with a reduction of approximately 500 cm in the water level. With respect to groundwater withdrawal within the basins, results show a very high impact in the hydroperiod in Amarga and Conde ponds.


Water level simulation Ephemeral ponds Hydrological impacts 



This study was partially financed by project OROARC (Spanish Ministry of Research, 2013–2016. CGL2013-46368P) and project CHG-LAGMOD (Guadalquivir River Basin Authority, 2012). The elaboration of Fig. 1 was carried out by the technician J. M. Bruque Carmona (University Pablo de Olavide).


  1. Allen, R. G., L. S. Pereira, D. Raes & M. Smith, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300(9): D05109.Google Scholar
  2. Díaz-Azpiroz, M., M. Rodríguez-Rodríguez & F. Pérez-Valera, 2011. Tectonic controls on local drainage evolution in semi-arid foreland areas (External Betics, southern Spain). Deformation mechanisms, Rheology and Tectonics. Oviedo. 31st August–2nd September 2011.Google Scholar
  3. Dimitriou, E., E. Moussoulis, F. Stamati & N. Nikolaidis, 2009. Modelling hydrological characteristics of Mediterranean Temporary Ponds and potential impacts from climate change. Hydrobiologia 634(1): 195–208.CrossRefGoogle Scholar
  4. Gil, J. M., M. Mudarra, B. Andreo, L. Linares, F. Carrasco & J. Benavente, 2015. Resultados preliminares del registro contínuo de la descarga del manantial del molino de los aguileras y su relación con las variaciones de lámina de agua en la laguna grande de archidona (provincia de Málaga). Andalusian Symposium on Water (SIAGA). Málaga (Spain), 4–6 November 2015.Google Scholar
  5. Hayashi, M. & G. VanderKamp, 2005. Water level changes in ponds and lakes: the hydrological processes. In Johnson, E. & M. Kiyoko (eds), Plant Disturbance Ecology. The Process and the Response. Elsevier, Calgary: 676.Google Scholar
  6. Hayashi, M., G. VanderKamp & D. L. Rudolph, 1998. Water and solute transfer between a prairie wetland and adjacent uplands. Journal of Hydrology 207: 42–55.CrossRefGoogle Scholar
  7. Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change: Working Group I: The Scientific Basis [].
  8. Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. Fernandez, F. R. Sousa, M. Søndergaard Kernan & M. Beklioglu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750(1): 201–227.CrossRefGoogle Scholar
  9. Kohfahl, C., M. Rodriguez, C. Fenk, C. Menz, J. Benavente, H. Hubberten & A. Pekdeger, 2008. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data. Journal of Hydrology 351(1): 170–187.CrossRefGoogle Scholar
  10. Li, L., A. Vrieling, A. Skidmore, T. Wang, A. R. Muñoz & E. Turak, 2015. Evaluation of MODIS spectral indices for monitoring hydrological dynamics of a small, seasonally-flooded wetland in southern Spain. Wetlands 35(5): 1–14.CrossRefGoogle Scholar
  11. Martín-Algarra, A. & J. A. Vera, 2004. The betic cordillera. In Vera, J. A. (ed.), Spanish Geology. SGE, Madrid: 352–354.Google Scholar
  12. McMahon, T. A., M. C. Peel, L. Lowe, R. Srikanthan & T. R. McVicar, 2013. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrology and Earth System Sciences 17(4): 1331–1363.CrossRefGoogle Scholar
  13. Mudarra, M., D. Sánchez, J. A. Barberá & B. Andreo, 2015. Some aspects related to the continuous monitoring of natural karstic springs discharge responses (gyspsum and carbonate). Symposium of Water in Andalusia. Series on Hydrogeology and Groundwater, Spanish Geological Survey, 32: 151–165.Google Scholar
  14. Penman, H. L., 1956. Estimating evaporation. Eos, Transactions American Geophysical Union 37(1): 43–50.CrossRefGoogle Scholar
  15. Rodríguez-Rodríguez, M., 2007. Hydrogeology of ponds, pools and playa-lakes from southern Spain. Wetlands 27(4): 819–830.CrossRefGoogle Scholar
  16. Rodriguez-Rodriguez, M., F. Moral, J. C. Balanyá, M. Diaz & I. Expósito, 2009. Tectonic Controls on the development of Continental Playa-Lakes of the Guadalquivir River Basin (Betics, Spain). American Geophysical Union, Fall Meeting 2009. San Francisco, California, 14–18 de December 2009.Google Scholar
  17. Rodríguez-Rodríguez, M., F. Moral, J. Benavente & M. Beltrán, 2010. Developing hydrological indices in semi-arid playa-lakes by analyzing their main morphometric, climatic and hydro chemical characteristics. Journal of Arid Environments 74(11): 1478–1486.CrossRefGoogle Scholar
  18. Rodríguez-Rodríguez, M. & M. Schilling, 2014. A hydrological simulation of the water regime in two playa lakes located in southern Spain. Journal of Earth System Science 123(6): 1295–1305.CrossRefGoogle Scholar
  19. Rosenberry, D. O. & M. Hayashi, 2013. Assessing and measuring wetland hydrology. In Anderson, J. T. & D. A. Davis (eds), Wetland Techniques. Springer, Berlin: 87–225.CrossRefGoogle Scholar
  20. Sanz de Galdeano, C., J. A. Lozano & E. Puga, 2008. Structure and organization of Trias from Antequera. Revista de la Sociedad Geológica de 21(3–4): 111–124.Google Scholar
  21. Velázquez, E., 2007. Water trade in Andalusia. Virtual water: an alternative way to manage water use. Ecological Economics 63(1): 201–208.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Miguel Rodríguez-Rodríguez
    • 1
  • Ana Fernández
    • 1
  • Francisco Moral
    • 1
  1. 1.Pablo de Olavide UniversitySevilleSpain

Personalised recommendations