, Volume 776, Issue 1, pp 19–33 | Cite as

Sediment–water interaction in phosphorus cycling as affected by trophic states in a Chinese shallow lake (Lake Donghu)

  • Xi Chen
  • Hui Li
  • Jie Hou
  • Xiuyun Cao
  • Chunlei Song
  • Yiyong Zhou
Primary Research Paper


Lake sediment substantially accumulates nutrients, while little is known regarding the conditions under which it tends to be a sink or source of phosphorus. It is postulated that the above functions were largely dependent on trophic state. To test this hypothesis, composition, abundance, and size-spectrum of phytoplankton were studied in a Chinese shallow lake (Lake Donghu), together with concentrations and sorption behaviors of phosphorus in water column and sediment. Relationships among these variables were also examined by structural equation model. In the basins with the lowest phosphorus concentration, sediment was a phosphorus source as judged by equilibrium phosphorus concentration, directly affecting the abundance of phytoplankton with smaller size. Contrastingly, in the basins with the highest phosphorus concentration, sediment tended to uptake phosphorus, companied by the lowest ratio of nitrogen to phosphorus, diversity, and evenness of phytoplankton with the smaller size one dominating. Oscillatoria sp. was directly affected by ammonia and phosphorus. Moreover, with a balanced exchange of phosphorus between sediment and water column, phytoplankton increased markedly with the highest diversity and evenness in the basins having intermediate phosphorus concentration. Overall, trophic state modulated sediment functions to supply nutrient and was in turn greatly affected by the sediment in shallow lakes.


Sediment phosphorus Phytoplankton community Phytoplankton size structure Structural equation model Eutrophication 



This work was supported by the National Science Foundation of China (41230748; 41173081; 41073066) and the State Key Laboratory of Freshwater Ecology and Biotechnology (2011FBZ15). Many thanks are given to Li Yang, Bai Yunqin, and Sun Aihua for their kind helps in sampling collection.


  1. Aleya, L. & C. Amblard, 1989. Importance quantitative de différentes classes de taille phytoplanctoniques en milieu lacustre eutrophe. Hydrobiologia 183(2): 97–113.CrossRefGoogle Scholar
  2. APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 19th edition. American Public Health Association, Washington, DC.Google Scholar
  3. Arhonditsis, G., M. Karydis & G. Tsirtsis, 2003. Analysis of phytoplankton community structure using similarity indices: a new methodology for discriminating among eutrophication levels in coastal marine ecosystems. Environmental Management 31(5): 619–632.CrossRefPubMedGoogle Scholar
  4. Auer, M. T., N. A. Johnson, M. R. Penn & S. W. Effler, 1993. Measurement and verification of rates of sediment phosphorus release for a hypereutrophic urban lake. Hydrobiologia 253(1–3): 301–309.CrossRefGoogle Scholar
  5. Bailey-Watts, A., 1986. Seasonal variation in size spectra of phytoplankton assemblages in Loch Leven, Scotland. Hydrobiologia 138(1): 25–42.CrossRefGoogle Scholar
  6. Bandeira, B., J. L. Jamet, D. Jamet & J. M. Ginoux, 2013. Mathematical convergences of biodiversity indices. Ecological Indicators 29: 522–528.CrossRefGoogle Scholar
  7. Behl, S., V. de Schryver, S. Diehl & H. Stibor, 2012. Trophic transfer of biodiversity effects: functional equivalence of prey diversity and enrichment? Ecol Evol 2(12): 3110–3122.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brauer, V. S., M. Stomp & J. Huisman, 2012. The nutrient-load hypothesis: patterns of resource limitation and community structure driven by competition for nutrients and light. Am Nat 179(6): 721–740.CrossRefPubMedGoogle Scholar
  9. Brown, C. D., M. V. Hoyer, R. W. Bachmann & D. E. Canfield, 2000. Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate lake data. Canadian Journal of Fisheries and Aquatic Sciences 57(8): 1574–1583.CrossRefGoogle Scholar
  10. Campos, H., W. Steffen, G. Aguero, O. Parra & L. Zuniga, 1992. Limnological studies of Lake Rupanco (Chile) morphometry, physics, chemistry, plankton, and primary productivity. Archiv Fur Hydrobiologie 90(1): 85–113.Google Scholar
  11. Cardinale, B. J., H. Hillebrand, W. S. Harpole, K. Gross & R. Ptacnik, 2009. Separating the influence of resource ‘availability’ from resource ‘imbalance’ on productivity-diversity relationships. Ecol Lett 12(6): 475–487.CrossRefPubMedGoogle Scholar
  12. Cha, Y., C. A. Stow & E. S. Bernhardt, 2013. Impacts of dreissenid mussel invasions on chlorophyll and total phosphorus in 25 lakes in the USA. Freshwater Biology 58(1): 192–206.CrossRefGoogle Scholar
  13. Christophoridis, C. & K. Fytianos, 2006. Conditions affecting the release of phosphorus from surface lake sediments. Journal of Environmental Quality 35(4): 1181–1192.CrossRefPubMedGoogle Scholar
  14. Correa, C. & A. P. Hendry, 2012. Invasive salmonids and lake order interact in the decline of puye grande Galaxias platei in western Patagonia lakes. Ecological Applications 22(3): 828–842.CrossRefPubMedGoogle Scholar
  15. Cottingham, K. L., 1999. Nutrients and zooplankton as multiple stressors of phytoplankton communities: evidence from size structure. Limnology and Oceanography 44(3): 810–827.CrossRefGoogle Scholar
  16. Cymbola, J., M. Ogdahl & A. D. Steinman, 2008. Phytoplankton response to light and internal phosphorus loading from sediment release. Freshwater Biology 53(12): 2530–2542.CrossRefGoogle Scholar
  17. Diaz, M. M. & F. L. Pedrozo, 1996. Nutrient limitation in Andean-Patagonian lakes at latitude 40-41 degrees S. Archiv Fur Hydrobiologie 138(1): 123–143.Google Scholar
  18. Dickman, E. M., M. J. Vanni & M. J. Horgan, 2006. Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 149(4): 676–689.CrossRefPubMedGoogle Scholar
  19. Elser, J. J. & C. R. Goldman, 1991. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnology and Oceanography 36(1): 64–90.CrossRefGoogle Scholar
  20. Finkel, Z. V., C. J. Vaillancourt, A. J. Irwin, E. D. Reavie & J. P. Smol, 2009. Environmental control of diatom community size structure varies across aquatic ecosystems. P R Soc B 276(1662): 1627–1634.CrossRefGoogle Scholar
  21. Gamfeldt, L. & H. Hillebrand, 2011. Effects of total resources, resource ratios, and species richness on algal productivity and evenness at both metacommunity and local scales. Plos One 6(7): e21972.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Golterman, H. L., 1996. Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods. Hydrobiologia 335(1): 87–95.CrossRefGoogle Scholar
  23. Haggard, B. E., E. H. Stanley & R. Hyler, 1999. Sediment-phosphorus relationships in three northcentral Oklahoma streams. T Asae 42(6): 1709–1714.CrossRefGoogle Scholar
  24. Higgins, S. N., M. J. Vander Zanden, L. N. Joppa & Y. Vadeboncoeur, 2011. The effect of dreissenid invasions on chlorophyll and the chlorophyll: total phosphorus ratio in north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences 68(2): 319–329.CrossRefGoogle Scholar
  25. Hillebrand, H. & V. Lehmpfuhl, 2011. Resource stoichiometry and consumers control the biodiversity-productivity relationship in pelagic metacommunities. Am Nat 178(2): 171–181.CrossRefPubMedGoogle Scholar
  26. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54(2): 427–432.CrossRefGoogle Scholar
  27. Holmroos, H., J. Niemisto, K. Weckstrom & J. Horppila, 2009. Seasonal variation of resuspension-mediated aerobic release of phosphorus. Boreal Environ Res 14(6): 937–946.Google Scholar
  28. Hou, J., X. Y. Cao, C. L. Song & Y. Y. Zhou, 2013. Predominance of ammonia-oxidizing archaea and nirK-gene-bearing denitrifiers among ammonia-oxidizing and denitrifying populations in sediments of a large urban eutrophic lake (Lake Donghu). Canadian Journal of Microbiology 59(7): 456–464.CrossRefPubMedGoogle Scholar
  29. House, W. A., F. H. Denison, J. T. Smith & P. D. Armitage, 1995. An investigation of the effects of water velocity on inorganic phosphorus influx to a sediment. Environmental Pollution 89(3): 263–271.CrossRefPubMedGoogle Scholar
  30. Hu, H., 2006. The freshwater algae of China: systematics, taxonomy and ecology. Science Press, Beijing.Google Scholar
  31. Hu, K. M., Y. Pang, H. Wang, X. M. Wang, X. W. Wu, K. Bao & Q. Liu, 2011. Simulation study on water quality based on sediment release flume experiment in Lake Taihu, China. Ecological Engineering 37(4): 607–615.CrossRefGoogle Scholar
  32. Interlandi, S. J. & S. S. Kilham, 2001. Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82(5): 1270–1282.CrossRefGoogle Scholar
  33. Interlandi, S. J., S. S. Kilham & E. C. Theriot, 1999. Responses of phytoplankton to varied resource availability in large lakes of the Greater Yellowstone Ecosystem. Limnology and Oceanography 44(3): 668–682.CrossRefGoogle Scholar
  34. Istvanovics, V., 1994. Fractional composition, adsorption and release of sediment phosphorus in the Kis-Balaton reservoir. Water Research 28(3): 717–726.CrossRefGoogle Scholar
  35. Jian, W. & K. L. Jian, 1991. Role of phosphorus cycling in algal metabolism and algal succession in Lake Donghu, China. Archiv Fur Hydrobiologie 120(4): 433–445.Google Scholar
  36. Jiang, J. G. & Y. F. Shen, 2006. Estimation of the natural purification rate of a eutrophic lake after pollutant removal. Ecological Engineering 28(2): 166–173.CrossRefGoogle Scholar
  37. Kemka, N., S. H. Z. Togouet, R. P. D. Kinfack, M. Nola, S. F. Menbohan & T. Njine, 2009. Dynamic of phytoplankton size-class and photosynthetic activity in a tropical hypereutrophic lake: the Yaounde municipal lake (Cameroon). Hydrobiologia 625: 91–103.CrossRefGoogle Scholar
  38. Kilham, P. & S. S. Kilham, 1980. The evolutionary ecology of phytoplankton. In Morris, I. (ed), Studies in Ecology, Vol. 7. Blackwell Scientific Publication, Oxford: 571–597.Google Scholar
  39. Kohler, J. & S. Hoeg, 2000. Phytoplankton selection in a river-lake system during two decades of changing nutrient supply. Hydrobiologia 424: 13–24.CrossRefGoogle Scholar
  40. Korhonen, J. J., J. J. Wang & J. Soininen, 2011. Productivity-diversity relationships in lake plankton communities. Plos One 6(8): e22041.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lafond, M., B. Pinelalloul & P. Ross, 1990. Biomass and photosynthesis of size-fractionated phytoplankton in Canadian shield Lakes. 354. Hydrobiologia 196(1): 25–38.CrossRefGoogle Scholar
  42. Li, H., X. Y. Cao, C. L. Song & Y. Y. Zhou, 2012. Vertical variations in fractionations and sorption behaviors of phosphorus in sediments of Lake Chaohu and a river (the Nanfei River) entering it. Resources and Environment in the Yangtze basin 21(Z2): 3–9.Google Scholar
  43. Li, Y., S. Zhao, K. Zhao, P. Xie & J. Fang, 2006. Land-cover changes in an urban lake watershed in a mega-city. Central China. Environmental monitoring and assessment 115(1–3): 349–359.CrossRefPubMedGoogle Scholar
  44. Liu, J. K., 1992. Annual Report of State Key Laboratory for Freshwater Ecology and Biotechnology of China (FEBL) for 1992. International Academic Publishers 1993, Beijing.Google Scholar
  45. Lyons, J. B., J. H. Gorres & J. A. Amador, 1998. Spatial and temporal variability of phosphorus retention in a riparian forest soil. Journal of Environmental Quality 27(4): 895–903.CrossRefGoogle Scholar
  46. Ma, H., F. Y. Cui, Z. Q. Liu, Z. Q. Fan, W. J. He & P. J. Yin, 2010. Effect of filter-feeding fish silver carp on phytoplankton species and size distribution in surface water: a field study in water works. Journal of Environmental Sciences-China 22(2): 161–167.CrossRefPubMedGoogle Scholar
  47. Meijer, M. L. & H. Hosper, 1997. Effects of biomanipulation in the large and shallow Lake Wolderwijd, The Netherlands. Hydrobiologia 342: 335–349.CrossRefGoogle Scholar
  48. Munawar, M., I. Munawar, L. Culp & G. Dupuis, 1978. Relative importance of nannoplankton in Lake Superior phytoplankton biomass and community metabolism. Journal of Great Lakes Research 4(3): 462–480.CrossRefGoogle Scholar
  49. Munawar, M. & I. F. Munawar, 1986. The seasonality of phytoplankton in the North American Great Lakes, a comparative synthesis. Hydrobiologia 138(1): 85–115.CrossRefGoogle Scholar
  50. Nakanishi, M., T. Hoson, Y. Inoue & M. Yagi, 1999. Relationship between the maximum standing crop of musty-odor producing algae and nutrient concentrations in the southern basin water of Lake Biwa. Water Science and Technology 40(6): 179–184.CrossRefGoogle Scholar
  51. Peeters, E. T. H. M., R. J. M. Franken, E. Jeppesen, B. Moss, E. Becares, L. A. Hansson, S. Romo, T. Kairesalo, E. M. Gross, E. van Donk, T. Noges, K. Irvine, R. Kornijow & M. Scheffer, 2009. Assessing ecological quality of shallow lakes: does knowledge of transparency suffice? Basic Applied and Ecology 10(1): 89–96.CrossRefGoogle Scholar
  52. Pielou, E. C., 1966. Species-diversity and pattern-diversity in study of ecological succession. Journal of Theoretical Biology 10(2): 370.CrossRefPubMedGoogle Scholar
  53. Pielou, E. C., 1975. Ecological diversity [M]. Wiley Inters, New York.Google Scholar
  54. Qian, S. Q., F. X. Kong, X. L. Shi, M. Zhang, X. Tan & Z. Yang, 2008. Interspecific interaction between microcystis aeruginosa and Chlorella pyrenoidosa in different phosphate media. Journal of Freshwater Ecology 23(4): 635–642.CrossRefGoogle Scholar
  55. Reynolds, C. S., 1984. Phytoplankton periodicity –the interactions of form, function and environmental variability. Freshwater Biology 14(2): 111–142.CrossRefGoogle Scholar
  56. Roy, E. D., N. T. Nguyen, S. Bargu & J. R. White, 2012. Internal loading of phosphorus from sediments of Lake Pontchartrain (Louisiana, USA) with implications for eutrophication. Hydrobiologia 684(1): 69–82.CrossRefGoogle Scholar
  57. Ruggiu, D., G. Morabito, P. Panzani & A. Pugnetti, 1998. Trends and relations among basic phytoplankton characteristics in the course of the long-term oligotrophication of Lake Maggiore (Italy). Hydrobiologia 370: 243–257.CrossRefGoogle Scholar
  58. Salmaso, N., 2011. Interactions between nutrient availability and climatic fluctuations as determinants of the long-term phytoplankton community changes in Lake Garda, Northern Italy. Hydrobiologia 660(1): 59–68.CrossRefGoogle Scholar
  59. Schtickzelle, M., 1981. Pierre-François Verhulst (1804-1849). La première découverte de la fonction logistique. Population (French Edition): 541–556.Google Scholar
  60. Shannon, C. E. & W. Weaver, 1963. The mathematical theory of communication [M]. University of Illinois Press, Illinois.Google Scholar
  61. Sheng, H., H. Liu, C. Y. Wang, H. C. Guo, Y. Liu & Y. H. Yang, 2012. Analysis of cyanobacteria bloom in the Waihai part of Dianchi Lake, China. Ecological Informatics 10: 37–48.CrossRefGoogle Scholar
  62. Shinada, A., S. Ban, Y. Yamada & T. Ikeda, 2005. Seasonal variations of plankton food web structure in the coastal water off Usujiri Southwestern Hokkaido, Japan. Journal of Oceanography 61(4): 645–654.CrossRefGoogle Scholar
  63. Song, C. L., X. Y. Cao, J. Q. Li, Q. M. Li & Y. Y. Zhou, 2005. Vertical variation in dissolved alkaline phosphatase activity in a shallow eutrophic lake determined in reverse micelles. Journal of Freshwater Ecology 20(4): 627–634.CrossRefGoogle Scholar
  64. Stockner, J. G., 1988. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnology and Oceanography 33: 765–775.CrossRefGoogle Scholar
  65. Tang, H. & P. Xie, 2000. Budgets and dynamics of nitrogen and phosphorus in a shallow, hypereutrophic lake in China. Journal of Freshwater Ecology 15(4): 505–514.CrossRefGoogle Scholar
  66. Thompson, F. L., P. C. Abreu & W. Wasielesky, 2002. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture 203(3): 263–278.CrossRefGoogle Scholar
  67. Throndsen, J., 1978. Productivity and abundance of ultra-plankton and nanoplankton in oslofjorden. Sarsia 63(4): 273–284.CrossRefGoogle Scholar
  68. Vollenweider, R. A., 1970. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD Report, September 1970 159 P.Google Scholar
  69. Vollenweider, R. A., 1975. Input-output models. Schweizerische Zeitschrift für Hydrologie 37(1): 53–84.Google Scholar
  70. Wagner, T., P. A. Soranno, K. E. Webster & K. S. Cheruvelil, 2011. Landscape drivers of regional variation in the relationship between total phosphorus and chlorophyll in lakes. Freshwater Biology 56(9): 1811–1824.CrossRefGoogle Scholar
  71. Wang, Y., Z. Y. Shen, J. F. Niu & R. M. Liu, 2009. Adsorption of phosphorus on sediments from the three-gorges reservoir (China) and the relation with sediment compositions. Journal of Hazardous Materials 162(1): 92–98.CrossRefPubMedGoogle Scholar
  72. Wang, Z. C., G. W. Li, G. B. Li & D. H. Li, 2012. The decline process and major pathways of Microcystis bloom in Taihu Lake, China. Chin J Oceanol Limn 30(1): 37–46.CrossRefGoogle Scholar
  73. Watson, S., E. Mccauley & J. A. Downing, 1992. Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Canadian Journal of Fisheries and Aquatic Sciences 49(12): 2605–2610.CrossRefGoogle Scholar
  74. Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42(3): 487–495.CrossRefGoogle Scholar
  75. Wu, Y. H., P. G. Kerr, Z. Y. Hu & L. Z. Yang, 2010. Removal of cyanobacterial bloom from a biopond-wetland system and the associated response of zoobenthic diversity. Bioresource Technology 101(11): 3903–3908.CrossRefPubMedGoogle Scholar
  76. Xie, L. Q. & P. Xie, 2002. Long-term (1956-1999) dynamics of phosphorus in a shallow, subtropical Chinese lake with the possible effects of cyanobacterial blooms. Water Research 36(1): 343–349.CrossRefPubMedGoogle Scholar
  77. Xie, P., 2006. Biological mechanisms driving the seasonal changes in the internal loading of phosphorus in shallow lakes. Science in China Series D-Earth Sciences 49: 14–27.CrossRefGoogle Scholar
  78. Zhu, W., L. Wan & L. F. Zhao, 2010. Effect of nutrient level on phytoplankton community structure in different water bodies. Journal of Environmental Sciences-China 22(1): 32–39.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Xi Chen
    • 1
  • Hui Li
    • 1
  • Jie Hou
    • 1
  • Xiuyun Cao
    • 1
  • Chunlei Song
    • 1
  • Yiyong Zhou
    • 1
  1. 1.The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyThe Chinese Academy of SciencesWuhanChina

Personalised recommendations