, Volume 774, Issue 1, pp 81–92 | Cite as

Do oxic–anoxic transitions constrain organic matter mineralization in eutrophic freshwater wetlands?

  • Daniele Longhi
  • Marco Bartoli
  • Daniele Nizzoli
  • Alex Laini
  • Pierluigi Viaroli


This study aims at investigating decomposition processes in wetlands that are daily or seasonally exposed to intermittent oxic and anoxic conditions. We hypothesized that in wetland ecosystems where anoxia regularly establishes, decomposition rates are not affected by oxygen shortage, especially when nitrates are available. Monitoring and experiments were performed from December 2003 to January 2005 in one of the widest (81 ha) freshwater wetlands in the Po river floodplain (Natural Reserve Paludi del Busatello, Italy). Intact sediment cores were sampled on a seasonal basis. Sediment–water fluxes of oxygen, dissolved inorganic carbon, methane, and inorganic nitrogen were determined under oxic and anoxic conditions. Oxic–anoxic transitions always resulted in enhanced ammonium, dissolved inorganic carbon, and methane effluxes. At high temperatures, the methane release from sediments was inversely related to both nitrate concentrations and uptake. Likely, nitrate can compensate for the oxygen deficiency while maintaining an oxidative metabolism, either supporting microbial decomposition as an electron acceptor or stimulating the oxidation of the byproducts of the anaerobic metabolism, e.g., methane. This is a key point as the number of temperate wetlands with concurrent nitrate pollution and oxygen shortage is increasing throughout the world.


Eutrophic wetlands Oxygen availability Nitrate Organic matter mineralization 


  1. Anderson, L. G., P. O. J. Hall, A. Iverfeldt, M. M. R. Van Der Loeff, B. Sundby & S. F. G. Westerlund, 1986. Benthic respiration measured by total carbonate production. Limnology and Oceanography 31: 319–329.CrossRefGoogle Scholar
  2. APHA, 1998. Standard Methods for the Examination of Water and Wastewaters, 20th ed. APHA, Washington, DC.Google Scholar
  3. Barica, J. & J. A. Mathias, 1979. Oxygen depletion and winterkill risk in small prairie lakes under extended ice cover. Journal of the Fisheries Research Board of Canada 36: 980–986.CrossRefGoogle Scholar
  4. Bartoli, M., E. Racchetti, C. A. Delconte, E. Sacchi, E. Soana, A. Laini, D. Longhi & P. Viaroli, 2012. Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks. Biogeosciences 9: 361–373.CrossRefGoogle Scholar
  5. Bastviken, D., L. Persson, G. Odham & L. Tranvik, 2004. Degradation of dissolved organic matter in oxic and anoxic lake water. Limnology and Oceanography 49: 109–116.CrossRefGoogle Scholar
  6. Bolpagni, R., E. Pierobon, D. Longhi, D. Nizzoli, M. Bartoli, M. Tomaselli & P. Viaroli, 2007. Diurnal exchanges of CO2 and CH4 across the water–atmosphere interface in a water chestnut meadow (Trapa natans L.). Aquatic Botany 87: 43–48.CrossRefGoogle Scholar
  7. Capone, D. G. & R. P. Kiene, 1988. Comparison of microbial dynamics in freshwater and marine environments: contrasts in anaerobic carbon catabolism. Limnology and Oceanography 33: 725–749.CrossRefGoogle Scholar
  8. Carignan, R. & D. R. S. Lean, 1991. Regeneration of dissolved substances in a seasonally anoxic lake: the relative importance of processes occurring in the water column and in the sediments. Limnology and Oceanography 36: 683–707.CrossRefGoogle Scholar
  9. Dalsgaard, T., L. P. Nielsen, V. Brotas, P. Viaroli, G. J. C. Underwood, D. B. Nedwell, K. Sundback, S. Rysgaard, A. Miles, M. Bartoli, L. Dong, D. C. O. Thornton, L. D. M. Ottosen, G. Castaldelli & N. Risgaard-Petersen, 2000. Protocol handbook for NICE-Nitrogen Cycling in Estuaries: a project under the EU research programme. Marine Science and Technology (MAST III).Google Scholar
  10. Diaz, R. J. & R. Rosenberg, 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.CrossRefPubMedGoogle Scholar
  11. Fenner, N. & C. Freeman, 2011. Drought-induced carbon loss in peatlands. Nature Geoscience 4: 895–900.CrossRefGoogle Scholar
  12. Ford, P. W., P. I. Boon & K. Lee, 2002. Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia 485: 97–110.CrossRefGoogle Scholar
  13. Grybos, M., M. Davranche, G. Gruau, P. Petitjean & M. Pédrot, 2009. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154: 13–19.CrossRefGoogle Scholar
  14. Guntiñas, M. E., F. Gil-Sotres, M. C. Leirós & C. Trasar-Cepeda, 2009. CO2 emission from soils under different uses and flooding conditions. Soil Biology and Biochemistry 41: 2598–2601.CrossRefGoogle Scholar
  15. Hanke, A., C. Cerli, J. Muhr, W. Borken & K. Kalbitz, 2013. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils. European Journal of Soil Science 64: 476–487.CrossRefGoogle Scholar
  16. Hulthe, G., S. Hulth & P. O. J. Hall, 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochimica et Cosmochimica Acta 62: 1319–1328.CrossRefGoogle Scholar
  17. Kane, E. S., M. R. Chivers, M. R. Turetsky, C. C. Treat, D. G. Petersen, M. Waldrop, J. W. Harden & A. D. McGuire, 2013. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen. Soil Biology and Biochemistry 58: 50–60.CrossRefGoogle Scholar
  18. Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith & J. C. Stevenson, 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.CrossRefGoogle Scholar
  19. Koroleff, F., 1970. Direct determination of ammonia in natural waters as indophenol blue. Information on Techniques and Methods for Seawater Analysis. ICES Journal of Marine Science 114: 799–801.Google Scholar
  20. Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.CrossRefGoogle Scholar
  21. Kristensen, E. & T. H. Blackburn, 1987. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia. Journal of Marine Research 45: 231–257.CrossRefGoogle Scholar
  22. Kristensen, E., S. I. Ahmed & A. H. Devol, 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnology and Oceanography 40: 1430–1437.CrossRefGoogle Scholar
  23. Lenth R., 2015. lsmeans: least-squares means. R package version 2.20-23.Google Scholar
  24. Liikanen, A., T. Murtoniemi, H. Tanskanen, T. Vaisanen & P. J. Martinkainen, 2002. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 59: 269–286.CrossRefGoogle Scholar
  25. Liu, R., A. Hofmann, F. O. Gülaçar, P.-Y. Favarger & J. Dominik, 1996. Methane concentration profiles in a lake with a permanently anoxic hypolimnion (Lake Lugano, Switzerland-Italy). Chemical Geology 133: 201–209.CrossRefGoogle Scholar
  26. Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes. Aquatic Botany 89: 303–310.CrossRefGoogle Scholar
  27. Longhi, D., M. Bartoli, D. Nizzoli & P. Viaroli, 2013. Benthic processes in fresh water fluffy sediments undergoing resuspension. Journal of Limnology 72: 1–12.CrossRefGoogle Scholar
  28. Lovley, D. R. & M. J. Klug, 1982. Intermediary Metabolism of Organic Matter in the Sediments of a Eutrophic Lake. Applied and Environmental Microbiology 43: 552–560.PubMedPubMedCentralGoogle Scholar
  29. Maerki, M., B. Mueller, C. Dinkel & B. Wehrli, 2009. Mineralization pathways in lake sediments with different oxygen and organic carbon supply. Limnology and Oceanography 54: 428–438.CrossRefGoogle Scholar
  30. Middelburg, J. J. & L. A. Levin, 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6: 1273–1293.CrossRefGoogle Scholar
  31. Nielsen, L. P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. Fems Microbiology Ecology 86: 357–362.CrossRefGoogle Scholar
  32. Nizzoli, D., E. Carraro, V. Nigro & P. Viaroli, 2010. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Research 44: 2715–2724.CrossRefPubMedGoogle Scholar
  33. Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & R Core Team, 2014. nlme: linear and nonlinear mixed effects models. R package version 3.1-118.Google Scholar
  34. Quiñones-Rivera, Z. J., B. Wissel, N. N. Rabalais & D. Justic, 2010. Effects of biological and physical factors on seasonal oxygen dynamics in a stratified, eutrophic coastal ecosystem. Limnology and Oceanography 55: 289–304.CrossRefGoogle Scholar
  35. R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  36. Racchetti, E., M. Bartoli, E. Soana, D. Longhi, R. R. Christian, M. Pinardi & P. Viaroli, 2011. Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification. Biogeochemistry 103: 335–354.CrossRefGoogle Scholar
  37. Revsbech, N. P., J. Sorensen, T. H. Blackburn & J. P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnology and Oceanography 25: 403–411.CrossRefGoogle Scholar
  38. Ribaudo, C., M. Bartoli, E. Racchetti, D. Longhi & P. Viaroli, 2011. Seasonal fluxes of O2, DIC and CH4 in sediments with Vallisneria spiralis: indications for radial oxygen loss. Aquatic Botany 94: 134–142.CrossRefGoogle Scholar
  39. Rose, C. & W. G. Crumpton, 1996. Effects of emergent macrophytes on dissolved oxygen dynamics in a prairie pothole wetland. Wetlands 16: 495–502.CrossRefGoogle Scholar
  40. Smemo, K. A. & J. B. Yavitt, 2011. Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8: 779–793.CrossRefGoogle Scholar
  41. Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.CrossRefPubMedGoogle Scholar
  42. Sørensen, J., B. B. Jørgensen & N. P. Revsbech, 1979. A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microbial Ecology 5: 105–115.CrossRefPubMedGoogle Scholar
  43. Stadmark, J. & L. Leonardson, 2007. Greenhouse gas production in a pond sediment: effects of temperature, nitrate, acetate and season. Science of the Total Environment 387: 194–205.CrossRefPubMedGoogle Scholar
  44. Sun, M.-Y., S. G. Wakeham & C. Lee, 1997. Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA. Geochimica et Cosmochimica Acta 61: 341–355.CrossRefGoogle Scholar
  45. Sweerts, J.-P. R. A., M.-J. Bar-Gilissen, A. A. Cornelese & T. E. Cappenberg, 1991. Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands). Limnology and Oceanography 36: 1124–1133.CrossRefGoogle Scholar
  46. Viaroli, P. & R. R. Christian, 2003. Description of trophic status of an eutrophic coastal lagoon through potential oxygen production and consumption: defining hyperautotrophy and dystrophy. Ecological Indicators 3: 237–250.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniele Longhi
    • 1
  • Marco Bartoli
    • 1
  • Daniele Nizzoli
    • 1
  • Alex Laini
    • 1
  • Pierluigi Viaroli
    • 1
  1. 1.Department of Life SciencesParma UniversityParmaItaly

Personalised recommendations