, Volume 773, Issue 1, pp 163–175 | Cite as

Patch occupancy of stream fauna across a land cover gradient in the southern Appalachians, USA

  • John R. Frisch
  • James T. Peterson
  • Kristen K. Cecala
  • John C. Maerz
  • C. Rhett Jackson
  • Ted L. Gragson
  • Catherine M. Pringle
Primary Research Paper


We modeled patch occupancy to examine factors that best predicted the prevalence of four functionally important focal stream consumers (Tallaperla spp., Cambarus spp., Pleurocera proxima, and Cottus bairdi) among 37 reaches within the Little Tennessee River basin of the southern Appalachian Mountains, USA. We compared 34 models of patch occupancy to examine the association of catchment and reach scale factors that varied as a result of converting forest to agricultural or urban land use. Occupancy of our taxa was linked to parameters reflecting both catchment and reach extent characteristics. At the catchment level, forest cover or its conversion to agriculture was a major determinant of occupancy for all four taxa. Patch occupancies of Tallaperla, Cambarus, and C. bairdi were positively, and Pleurocera negatively, correlated with forest cover. Secondarily at the reach level, local availability of large woody debris was important for Cambarus, availability of large cobble substrate was important for C. bairdi, and stream calcium concentration was important for P. proxima. Our results show the abundance of stream organisms was determined by the taxon-dependent interplay between catchment- and reach-level factors.


Appalachians Consumers Land use Patch occupancy Stream chemistry 



This study was part of the Coweeta Long Term Ecological Research study funded by National Science Foundation DEB0823293. It was supported by the Odum School of Ecology and the Warnell School of Forestry and Natural Resources at the University of Georgia. D. Hung, C. Kresl, L. Long, J. McMillan, J. Milanovich, S. Evans, S. Vulova, J. Cosgrove, and others provided critical field work. F. Benfield, D. Leigh, M. Valett, and J. Webster led collection of stream chemistry data. J. Hepinstall-Cymerman determined land cover in each catchment. J. Chamblee, K. Love, J. McDonald, and R. Benson produced the study area graphic. The USDA Forest Service provided key logistical support. M. Freeman, M. Snyder, S. Wenger, the Pringle lab, N. Bond, and three anonymous reviewers provided valuable comments on the manuscript.


  1. Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & F. Csaki (eds), Second International Symposium on Information Theory, Akademiai Kiado, Budapest, Hungary: 267–281Google Scholar
  2. Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology and Ecological Systematics 35: 257–284.CrossRefGoogle Scholar
  3. Barrett, K., B. S. Helms, C. Guyer & J. E. Schoonover, 2010. Linking process to pattern: causes of stream-breeding amphibian decline in urbanized watersheds. Biological Conservation 143: 1998–2005.CrossRefGoogle Scholar
  4. Borcard, D., P. Legendre, C. Avois-Jacquet & H. Tuomisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.CrossRefGoogle Scholar
  5. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Inference: An Information-Theoretic Approach, 2nd ed. Springer, New York.Google Scholar
  6. Carter, T., C. R. Jackson, A. Rosemond, C. Pringle, D. Radcliffe, W. Tollner, J. Maerz, D. Leigh & A. Trice, 2009. Beyond the urban gradient: barriers and opportunities for timely studies of urbanization effects on aquatic ecosystems. Journal of the North American Benthological Society 28: 1038–1050.CrossRefGoogle Scholar
  7. Cecala, K. K., 2012. The role of behavior in influencing headwater salamander responses to anthropogenic development. Ph. D. Dissertation, University of Georgia, Athens.Google Scholar
  8. Congdon, P., 2001. Bayesian Statistical Modelling. Wiley, New York.Google Scholar
  9. Creed Jr, R. P. & J. M. Reed, 2004. Ecosystem engineering by crayfish in a headwater stream community. Journal of the North American Benthological Society 23: 224–236.CrossRefGoogle Scholar
  10. Dillon Jr, R. T., 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  11. Dillon Jr, R. T. & J. Robinson, 2009. The snails the dinosaurs saw: are the pleurocid populations of the Older Appalachians a relict of the Paleozoic Era? Journal of the North American Benthological Society 28: 1–11.CrossRefGoogle Scholar
  12. Fonnesbeck, C. J. & M. J. Conroy, 2004. Application of integrated Bayesian modeling and Markov chain Monte Carlo methods to the conservation of a harvested species. Animal Biodiversity and Conservation 27: 267–281.Google Scholar
  13. Freckleton, R. P., 2011. Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behavioral Ecology and Sociobiology 65: 91–101.CrossRefGoogle Scholar
  14. Fukami, T. & D. A. Wardle, 2005. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society B 272: 2105–2115.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gaston, K. J., 2010. Valuing common species. Science 327: 154–155.CrossRefPubMedGoogle Scholar
  16. Gelman, A. & D. B. Rubin, 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7: 457–472.CrossRefGoogle Scholar
  17. Gelman, A., X. L. Meng & H. Stern, 1996. Posterior predictive assessment of model fitness via realized discrepancies with discussion. Statistica Sinica 6: 733–759.Google Scholar
  18. Gragson, T. L. & P. V. Bolstad, 2006. Land use legacies and the future of southern Appalachia. Society and Natural Resources 19: 175–190.CrossRefGoogle Scholar
  19. Grossman, G. D., R. E. Ratajczak Jr, J. T. Petty, M. D. Hunter, J. T. Peterson & G. Grenouillet, 2006. Population dynamics of Mottled Sculpin (Pisces) in a variable environment: information theoretic approaches. Ecological Monographs 76: 217–234.CrossRefGoogle Scholar
  20. Guisan, A. & N. E. Zimmermann, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.CrossRefGoogle Scholar
  21. Harding, J. S., E. F. Benfield, P. V. Bolstad, G. S. Helfman & E. B. D. Jones III, 1998. Stream biodiversity: the ghost of land use past. Proceedings of the National Academy of Sciences 95: 14843–14847.CrossRefGoogle Scholar
  22. Hosmer Jr, D. W. & S. Lemeshow, 2000. Applied Logistic Regression. Wiley, New York.CrossRefGoogle Scholar
  23. Hurvich, C. M. & C. Tsai, 1989. Regression and time series model selection in small samples. Biometrika 76: 297–307.CrossRefGoogle Scholar
  24. Huryn, A. D., 1986. Secondary production of the macroinverteberate community of a high-elevation stream in the southern Appalachian Mountains. Ph.D. Dissertation, University of Georgia, Athens.Google Scholar
  25. Hutchens Jr, J. J. & J. B. Wallace, 2002. Ecosystem linkages between southern Appalachian headwater streams and their banks: leaf litter breakdown and invertebrate assemblages. Ecosystems 5: 80–91.CrossRefGoogle Scholar
  26. Jackson, C. R., C. A. Sturm & J. M. Ward, 2001. Timber harvest impacts on small headwater channels in the Coast Ranges of Washington. Journal of the American Water Resources Association 37: 1533–1550.CrossRefGoogle Scholar
  27. Jackson, C. R., D. S. Leigh, S. L. Scarbrough & J. F. Chamblee, 2014. Herbaceous versus forested riparian vegetation: narrow and simple versus wide, woody and diverse stream habitat. River Research and Applications. doi: 10.1002/rra.2783.Google Scholar
  28. Kirk, R. W., P. V. Bolstad & S. M. Manson, 2012. Spatio-temporal trend analysis of long-term development patterns (1900-2030) in a Southern Appalachian County. Landscape and Urban Planning 104: 47–58.Google Scholar
  29. Kirsch, J. E., 2011. A multi-scaled approach to evaluating the fish community structure within southern Appalachian streams. Ph.D. Dissertation, University of Georgia, Athens.Google Scholar
  30. Lunn, D. J., A. Thomas, N. Best & D. Spiegelhalter, 2000. WinBUGS – A Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10: 325–337.CrossRefGoogle Scholar
  31. MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knutson & A. B. Franklin, 2003. Estimating site occupancy, colonization and local extinction probabilities when a species is not detected with certainty. Ecology 84: 2200–2207.CrossRefGoogle Scholar
  32. MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey & J. E. Hines, 2006. Occupancy Estimation and Modeling. Elsevier, Amsterdam.Google Scholar
  33. Mattfeldt, S. D. & E. H. C. Grant, 2007. Are two methods better than one?: area constrained transects and leaf litterbags for sampling stream salamanders. Herpetological Review 38: 43–45.Google Scholar
  34. Morris, D. W., 1987. Ecological scale and habitat use. Ecology 68: 362–369.CrossRefGoogle Scholar
  35. O’Hop, J., J. B. Wallace & J. D. Haefner, 1984. Production of a stream shredder, Peltoperla maria (Plecoptera: Peltoperlidae) in disturbed and undisturbed hardwood catchments. Freshwater Biology 14: 13–21.CrossRefGoogle Scholar
  36. Petty, J. T. & G. D. Grossman, 2007. Size-dependent territoriality of Mottled Sculpin in a southern Appalachian stream. Transactions of the American Fisheries Society 136: 1750–1761.CrossRefGoogle Scholar
  37. Pickett, S. T. A., 1989. Space-for-time substitution as an alternative to long-term studies. In Likens, G. E. (ed.), Long-term Studies in Ecology: Approaches and Alternatives. Springer, New York: 110–135.CrossRefGoogle Scholar
  38. Plummer, M., N. Best, K. Cowles & K. Vines, 2006. CODA: convergence diagnosis and output analysis for MCMC. R News 6: 7–11.Google Scholar
  39. Pollard, K. M., 2005. Population Growth and Distribution in Appalachia: New Realities. Population Reference Bureau, Washington, D.C.Google Scholar
  40. Poole, G. C., 2010. Stream hydrogeomorphology as a physical science basis for advances in stream ecology. Journal of the North American Benthological Society 29: 12–25.CrossRefGoogle Scholar
  41. R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, url http://www.R-project.org.
  42. Roy, A. H., M. C. Freeman, B. J. Freeman, S. J. Wenger, W. E. Ensign & J. L. Meyer, 2005. Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams. Journal of the North American Benthological Society 24: 656–678.CrossRefGoogle Scholar
  43. Royall, R. M., 1997. Statistical Evidence: A Likelihood Paradigm. Chapman and Hall, New York.Google Scholar
  44. Schmitz, O. J., 2010. Resolving Ecosystem Complexity. Princeton University Press, Princeton.Google Scholar
  45. Schofield, K. A., C. M. Pringle, J. L. Meyer & A. B. Sutherland, 2001. The importance of crayfish in the breakdown of rhododendron leaf litter. Freshwater Biology 46: 1191–1204.CrossRefGoogle Scholar
  46. Simmons, J. W. & S. J. Fraley, 2010. Distribution, status, and life-history observations of crayfishes in western North Carolina. Southeastern Naturalist 9: 79–126.CrossRefGoogle Scholar
  47. Sovell, L. A., B. Vondracek, J. A. Frost & K. G. Mumford, 2000. Impacts of rotational grazing and riparian buffers on physicochemical and biological characteristics of southeastern Minnesota, USA, streams. Environmental Management 26: 629–641.CrossRefPubMedGoogle Scholar
  48. Stout, B. M., E. F. Benfield & J. R. Webster, 1993. Effects of a forest disturbance on shredder production in southern Appalachian headwater streams. Freshwater Biology 29: 59–69.CrossRefGoogle Scholar
  49. Swank, W. T. & D. A. Crossley Jr, 1988. Introduction and site design. In Swank, W. T. & D. A. Crossley (eds), Forest Hydrology and Ecology at Coweeta. Springer, New York: 1–16.CrossRefGoogle Scholar
  50. Swift, L. W., G. B. Cunningham & J. E. Douglass, 1988. Climatology and hydrology. In Swank, W. T. & D. A. Crossley (eds), Forest Hydrology and Ecology at Coweeta. Springer, New York: 35–55.CrossRefGoogle Scholar
  51. U.S. Census Bureau, 1900–2000. U.S. Census of Population and Housing. Government Printing Office, Washington, D.C.Google Scholar
  52. Webster, J. R., E. F. Benfield, K. K. Cecala, J. F. Chamblee, C. A. Dehring, T. Gragson, J. H. Cymerman, C. R. Jackson, J. D. Knoepp, D. S. Leigh, J. C. Maerz, C. Pringle & H. M. Valett, 2012. Water quality and exurbanization in Southern Appalachian streams. In Boon, P. J. & P. J. Raven (eds), River Conservation and Management. Wiley-Blackwell, Hoboken: 91–106.CrossRefGoogle Scholar
  53. Webster, J. R. & J. L. Meyer, 1997. Organic matter budgets for streams: a synthesis. Journal of the North American Benthological Society 16: 141–161.CrossRefGoogle Scholar
  54. Woodall Jr, W. R. & J. B. Wallace, 1972. The benthic fauna in four small southern Appalachian streams. American Midland Naturalist 88: 393–407.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • John R. Frisch
    • 1
  • James T. Peterson
    • 2
  • Kristen K. Cecala
    • 3
  • John C. Maerz
    • 4
  • C. Rhett Jackson
    • 4
  • Ted L. Gragson
    • 5
  • Catherine M. Pringle
    • 6
  1. 1.Nongame Conservation Section, Wildlife Resources DivisionGeorgia Department of Natural ResourcesSocial CircleUSA
  2. 2.USGS Oregon Cooperative Fish and Wildlife Research UnitOregon State UniversityCorvallisUSA
  3. 3.Department of BiologyUniversity of the SouthSewaneeUSA
  4. 4.Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensUSA
  5. 5.Department of AnthropologyUniversity of GeorgiaAthensUSA
  6. 6.Odum School of EcologyUniversity of GeorgiaAthensUSA

Personalised recommendations