Skip to main content

Advertisement

Log in

Ecological degradation of a meandering river by local channelization effects: a case study in an Austrian lowland river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Anthropogenically induced siltation has serious effects on micro-habitat diversity and thus on aquatic organisms in lotic systems. The present study deals with the impact of siltation on the macroinvertebrate community in the River Lafnitz, south-eastern Austria. Our aim was to examine various ecological parameters in a meandering river stretch. The results significantly show (1) a generally lower taxa diversity, (2) a dominance of tolerant taxa such as Chironomidae and a clear reduction of sensitive taxa such as Ephemeroptera, Plecoptera, Trichoptera (EPT-taxa) and (3) overall lower abundances and biomass in sandy fractions. The present case study highlights various processes of fine sediment sources and sinks. While in most cases, fine sediment input is locally caused by erosion of adjacent terrestrial areas, even small-scale channelization of meandering rivers leads to subsequent trapping of huge sandy fractions especially in morphologically natural river sections. This inconspicuous but steady process is a risk to biodiversity and masks serious ecological degradation. Suitable management and restoration measures for anthropogenically silted rivers are therefore strongly recommendable. In summary, the study underlines the sensitivity of meandering systems and its dependence on catchment scale degradation and questions the reversibility of human impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews, E. D., 1979. Scour and Fill in a Stream Channel. East Fork River, Western Wyoming. U.S. Geological Survey Professional Paper 1117.

  • Aldridge, D. W., B. S. Payne & A. C. Miller, 1987. The effects if intermittent exposure to suspended solids and turbulence on three species of freshwater mussel. Environmental Pollution 45: 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Angradi, T. R., 1999. Fine sediment and macroinvertebrate assemblages in Appalachian streams: a field experiment with biomonitoring applications. Journal of the North American Benthological Society 18: 49–66.

    Article  Google Scholar 

  • AQEM Consortium, 2002. Manual for the application of the Aqem system: a comprehenssive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1. http://www.aqem.de/mains/products.php. 198.

  • Ashmore, P. & M. Church, 2001. The impact of climate change on rivers and river processes in Canada. Geological Survey of Canada, Bulletin 555.

  • Barzilai, R., J. B. Laronne & I. Reid, 2013. Effect of changes in fine-grained matrix on bedload sediment transport in a gravel-bed river. Earth Surface Processes Landforms 38(5): 441–448.

    Article  Google Scholar 

  • Bond, N. R. & B. J. Downes, 2003. The independent and interactive effects of fine sediment and flow on benthic invertebrate communities’ characteristic of small upland streams. Freshwater Biology 48: 455–565.

    Article  Google Scholar 

  • Brickerton, M., G. Petts, P. Armitage & E. Castella, 1993. Assessing the ecological effects of groundwater abstraction on chalk streams: three examples from eastern England. Regulated Rivers 8: 121–134.

    Article  Google Scholar 

  • Broekhuizen, N., S. M. Parkyn & D. Miller, 2001. Fine sediment effects on feeding and growth in the invertebrate grazers Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Deleatidium sp. (Ephemeroptera, Leptophlebiidae). Hydrobiologia 457: 125–132.

    Article  Google Scholar 

  • Brookes, A., 1986. Response of aquatic vegetation to sedimentation downstream from river channelization works in England and Wales. Biological Conservation 38: 352–367.

    Article  Google Scholar 

  • Bunte, K. & S. R. Abt, 2001. Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring. RMRS-GTR-74, US Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado.

  • Carling, P. A., 1984. Deposition of fine and coarse sand in an open-work gravel bed. Canadian Journal of Fisheries and Aquatic Sciences 41: 263–270.

    Article  Google Scholar 

  • Carson, E. C., 2006. Hydrologic modelling and flood conveyance and impacts of historic overbank sedimentation in West Fork Black´s Fork, Uinta Mountains, north-eastern Utah, USA. Geomorphology 75: 368–383.

    Article  Google Scholar 

  • Chapman, D. W., 1988. Critical review of variables used to define effects of fines in redds of large Salmonids. Transaction of the American Fisheries Society 117: 1–21.

    Article  Google Scholar 

  • Connolly, N. M. & R. G. Pearson, 2007. The effect of fine sedimentation on tropical stream macroinvertebrate assemblages: a comparison using flow-through artificial stream channels and recirculating mesocosms. Hydrobiologia 592: 423–438.

    Article  Google Scholar 

  • Constantine, J. A., T. Dunne, H. Piégay & M. Kondolf, 2009. Control of the alluvium of oxbows lakes by bed-material load along the Sacramento River, California. Sedimentology 57: 389–407.

    Article  Google Scholar 

  • Couceiro, S. R. M., N. Hamada, B. R. Forsberg & C. Padovesi-Fonseca, 2010. Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon. Journal of Soils and Sediments 10: 89–103.

    Article  CAS  Google Scholar 

  • Crosa, G. & A. Buffagni, 2002. Spatial and temporal niche overlap of two mayfly species (Ephemeroptera): the role of substratum roughness and body size. Hydrobiologia 474: 107–115.

    Article  Google Scholar 

  • Davies-Colley, R. J., C. W. Hickey & J. M. Quinn, 1992. Effects of clay discharges on streams. Hydrobiologia 248: 215–234.

    Article  Google Scholar 

  • Dieras, P. L., J. A. Constantine, T. C. Hales, H. Piégay & J. Riquier, 2013. The role of oxbow lakes in the off-channel storage of bed material along the Ain River, France. Geomorphology 188: 110–119.

    Article  Google Scholar 

  • Dietrich, W. E., J. W. Kichner, H. Ikeda & F. Iseya, 1989. Sediment supply and the development of the coarse surface layer in gravel bedded river. Nature 340: 215–217.

    Article  Google Scholar 

  • Downes, B. J., 1990. Patch dynamics and mobility of fauna in streams and other habitats. Oikos 59: 411–413.

    Article  Google Scholar 

  • Erman, D. C. & F. K. Ligon, 1988. Effects of discharge fluctuation and the addition of fine sediment on stream fish and macroinvertebrates below a water-filtration facility. Environmental Management 12: 85–97.

    Article  CAS  Google Scholar 

  • Extence, C. A., R. P. Chadd, J. England, M. J. Dunbar, P. J. Wood & E. D. Taylor, 2011. The assessment of fine sediment accumulation in rivers using macro-invertebrate community response. River Research and Applications 29(1): 17–55.

    Article  Google Scholar 

  • Graham, A. A., 1990. Siltation of stone-surface periphyton in rivers by clay-sized particles from low concentrations in suspension. Hydrobiologia 199: 107–115.

    Article  Google Scholar 

  • Grams, P. E. & J. C. Smith, 2002. Streamflow regulation and multi-level flood plain formation: channel narrowing on the aggrading Green River in the eastern Uinta Mountains, Colorado and Utah. Geomorphology 44: 337–360.

    Article  Google Scholar 

  • Gravelle, J. A., T. E. Link, J. R. Broglio & J. H. Braatne, 2009. Effects of timber harvest on aquatic macroinvertebrate community composition in a Northern Idaho Watershed. Forest Science 55: 252–366.

    Google Scholar 

  • Goode, J. R. & E. E. Wohl, 2007. Relationships between land-use and forced-pool characteristics in the Colorado Front Range. Geomorphology 83: 249–265.

    Article  Google Scholar 

  • Harding, J. S., R. G. Young, J. W. Hayes, K. A. Shearer & J. D. Stark, 1999. Changes in agricultural intensity and river health along a river continuum. Freshwater Biology 42: 345–357.

    Article  Google Scholar 

  • Hauer, C., 2015. Review of hydro-morphological management criteria on a river basin scale for preservation and restoration of freshwater pearl mussel habitats. Limnologica 50: 40–53.

    Article  Google Scholar 

  • Hauer, C. & H. Habersack, 2009. Morphodynamics of a 1000-year flood in the Kamp River, Austria, and impacts on floodplain morphology. Earth Surface Processes Landforms 34(5): 654–682.

    Article  Google Scholar 

  • Hearne, J. W. & P. D. Armitage, 1993. Implications of the annual macrophyte growth cycle on habitat in rivers. Regulated Rivers 8: 313–322.

    Article  Google Scholar 

  • Hering, D., L. Carvalho, C. Argillier, M. Beklioglu, A. Borja, A. C. Cardoso, H. Duel, T. Ferreira, L. Globevnik, J. Hanganu, S. Hellsten, E. Jeppesen, V. Kodeš, A. L. Solheim, T. Nõges, S. Ormerod, Y. Panagopoulos, S. Schmutz, M. Venohr & S. Birk, 2015. Managing aquatic ecosystems and water resources under multiple stress - an introduction to the MARS project. Science of the Total Environment 15(503–504): 10–21.

    Article  Google Scholar 

  • Hooke, J. M., 1986. Changes in meander morphology. In Gardiner, V. (ed.), International Geomorphology. Wiley, Chichester: 591–609.

    Google Scholar 

  • Horowitz, A. J., K. A. Elrick, J. A. Robbinson & R. B. Cook, 1995. Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur d´Alene, Idaho, USA. Part II: subsurface sediments. Hydrological Processes 9: 35–54.

    Article  Google Scholar 

  • Illies, J. (ed.) 1978. Limnofauna Europaea. 2., überarbeitete und ergänzte Auflage, G. Fischer Verlag, Stuttgart, New York; Swets & Zeitlinger B.V. Amsterdam.

  • Jones, J. I., J. F. Murphy, A. L. Collins, D. A. Sear, P. S. Naden & P. D. Armitage, 2011. The impact of fine sediment on macro- invertebrates. River Research and Applications 28(8): 1055–1071.

    Article  Google Scholar 

  • Kaller, M. D. & K. J. Hartman, 2004. Evidence of a threshold level of fine sediment accumulation for altering benthic macroinvertebrate communities. Hydrobiologia 518: 95–104.

    Article  Google Scholar 

  • Kirchner, J. W., W. E. Dietrich, F. Iseya & H. Ikeda, 1990. The variability of critical shear stress, friction angle, and grain protrusion in water-worked sediments. Sedimentology 37: 647–672.

    Article  Google Scholar 

  • Kiss, T., K. Fiala & G. Sipos, 2008. Alterations of channel parameters in response to river regulation works since 1840 on the lower Tisza River (Hungary). Geomorphology 98: 96–110.

    Article  Google Scholar 

  • Kruskal, J. B., 1964. Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika 29: 1–27.

    Article  Google Scholar 

  • Lauer, J. W. & G. Parker, 2008. New local removal of floodplain sediment by river meander migration. Geomorphology 96: 123–149.

    Article  Google Scholar 

  • Leitner, P., C. Hauer, T. Ofenbock, F. Pletterbauer, A. Schmidt-Kloiber & W. Graf, 2015. Fine sediment deposition affects biodiversity and density of benthic macroinvertebrates: a case study in the freshwater pearl mussel river Waldaist (Upper Austria). Limnologica 50: 54–57.

    Article  Google Scholar 

  • Liggett, J. A. & J. A. Cunge, 1975. Numerical Methods of Solution of the Unsteady Flow Equations. In Mahmood, K., Yevjevich, V. (eds), Unsteady Flow in Open Channels, Vol. I, Water Resources: Fort Collins, Colorado: 89–179.

  • Lisle, T. E., 1979. A sorting mechanism for a riffle-pool sequence. Geological Society of the American Bulletin 90: 1142–1157.

    Article  Google Scholar 

  • Lisle, T. E., 1989. Sediment transport and resulting deposition in spawning gravel, north coastal California. Water Resources Research 25: 1303–1319.

    Article  Google Scholar 

  • Lisle, T. E. & S. Hilton, 1992. The volume of fine sediment in pools: an index of sediment supply in gravel bed streams. Water Resources Bulletin 28: 371–383.

    Article  Google Scholar 

  • Margalef, R., 1951. Diversidad de especies en les communidades naturales. Publicaciones del Instituto de Biologia Aplicada Barcelonia 6: 59–72.

    Google Scholar 

  • Martin, D. C. & R. K. Neely, 2001. Benthic macroinvertebrate response to sedimentation in a Typha angustifolia L. wetland. Wetlands Ecology and Management 9: 441–454.

    Article  Google Scholar 

  • Meyer-Peter, E. & W. Müller, 1948. Formulas for bed-load transport. In Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research. 39–64.

  • Miller, A. J. & L. L. Shoemaker, 1986. Channel Storage of Fine-Grained Sediment in the Potamac River. In Hadley, R. F. (ed.), Proceedings of the Drainage Basin Sediment Delivery Symposium. Albuquerque, New Mexico, USA, 4–8 August 1986, IAHS Publication No. 159: 287–303.

  • Moog, O., Schmidt‐Kloiber, A., Ofenböck, T. & J. Gerritsen, 2001. Aquatische Ökoregionen und Bioregionen Österreichs ‐ eine Gliederung nach geoökologischen Milieufaktoren und Makrozoobenthos‐Zönosen. Wasserwirtschaftskataster, Bundesministerium für Land‐ und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien; ISBN 3‐85 174 ‐ 0432.

  • Murphy, M. L. & A. M. Milner, 1997. Timber Harvest and Fish Habitat. In Milner, A. M. & M. W. Oswood (eds), Alaska Fresh Waters. Springer, New York: 229–263.

    Chapter  Google Scholar 

  • NGP, 2009. Nationaler Gewässerbewirtschaftungsplan 2009 – (BMLFUW-UW.4.1.2/0011-I/4/2010).

  • Ormerod, S. J., M. Dobson, A. G. Hildrew & C. R. Townsend, 2010. Multiple stressors in freshwater ecosystems. Freshwater Biology 55: 1–4.

    Article  Google Scholar 

  • Owens, P. N., D. E. Walling, J. Carton, A. A. Mecharg, J. Wright & G. J. L. Leeks, 2001. Downstream changes in the transport and storage of sediment associated contaminants (P, Cr, PCBs) in agricultural and industrialised drainage basins. Water Research 36: 685–701.

    Article  Google Scholar 

  • Owens, P. N., R. J. Batalla, A. J. Collins, B. Gomez, D. M. Hicks, A. J. Horowitz, G. M. Kondolf, M. Marden, M. J. Page, D. H. Peacock, E. L. Petticrew, W. Salomons & N. A. Trustrum, 2005. Fine-grained sediment in river systems: environmental significance and management issues. River Research and Application 21: 693–717.

    Article  Google Scholar 

  • Peizhen, Z., P. Molnar & W. R. Downs, 2001. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410: 891–897.

    Article  CAS  PubMed  Google Scholar 

  • Platts, W. S. & W. F. Megahan, 1975. Time Trends in Riverbed Sediment Composition in Salmon and Steelhead Spawning Areas. South Fork Salmon River, Idaho. In Transactions of the 40th North American Wildlife and Natural Resource Conference, 1975. Wildlife Institute, Washington. D.C.: 229–239.

  • Renkonen, O., 1938. Statisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. Annales Botanici Societatis Zoologicæ-Botanicæ Fennicæ “Vanamo” vol. 6: 1–231.

  • Richards, C. & K. L. Bacon, 1994. Influence of fine sediment on macroinvertebrate colonization of surface and hyporheic stream substrates. Great Basin Naturalist 54: 106–113.

    Google Scholar 

  • Richards, C., G. H. Host & J. W. Arthur, 1993. Identification of predominant environmental factors structuring stream macroinvertebrate communities within a large agricultural catchment. Freshwater Biology 29: 285–294.

    Article  Google Scholar 

  • Rodriguez, L. B., P. A. Cello, C. A. Vionnet & D. Goodrich, 2008. Fully conservative coupling HEC-RAS with MODFLOW to simulate stream-aquifer interactions on a drainage basin. Journal of Hydrology 353: 129–142.

    Article  CAS  Google Scholar 

  • Scrivener, J. C. & M. J. Brownlee, 1989. Effects of forest harvesting on spawning gravel and incubation survival of chum (Onchorhynchus keta) and coho salmon (Onchorhynchus kisutch) in Carnation Creek, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 46: 681–696.

    Article  Google Scholar 

  • Sear, D. A., L. B. Frostick, G. Rollinson & T. E. Lisle, 2008. The significance and mechanics of fine-sediment infiltration and accumulation in gravel spawning beds. American Fisheries Society Symposium Series 65: 149–173.

    Google Scholar 

  • Shields, F. & S. Abt, 1989. Sediment deposition in cutoff meander bends and implications for effective management. Regulated Rivers: Research & Management 4: 381–396.

    Article  Google Scholar 

  • Sørensen, T., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab 5: 1–34.

    Google Scholar 

  • Suren, A. M., 2005. Effects of deposited sediment on patch selection by two grazing stream invertebrates. Hydrobiologia 549: 205–218.

    Article  Google Scholar 

  • Suren, A. M. & I. G. Jowett, 2001. Effects of deposited sediment on invertebrate drift: an experimental study. New Zealand Journal of Marine and Freshwater Research 35(4): 725–737.

    Article  Google Scholar 

  • Tockner, K., M. Pusch, J. Gessner & C. Wolter, 2011. Domesticated ecosystem and novel communities: challenges for management of large rivers. Ecohydrology & Hydrobiology 11: 167–174.

    Article  Google Scholar 

  • USACE, 2002. HEC – RAS User manual 3.1.1. U.S. Corps of Engineers.

  • Walling, D. E., 1990. Linking the Field to the River: Sediment Delivery from Agricultural Land. In Boardman, J., I. D. L. Foster & J. A. Dearing (eds), Soil Erosion on Agricultural Land. Wiley, Chichester: 129–152.

    Google Scholar 

  • Wimmer R., Wintersberger H., & Parthl G, (2012). Hydromorphologische Leitbilder Fließgewässertypisierung in Österreich. Bundesministerium für Land‐ und Forstwirtschaft, Umwelt und Wasserwirtschaft – Abt. VII/1.

  • Wood, P. J. & P. D. Armitage, 1997. Biological effects of fine sediments in the lotic environment. Environmental Management 21: 203–217.

    Article  PubMed  Google Scholar 

  • Wood, P. J. & P. D. Armitage, 1999. Sediment deposition in a small lowland stream - management implications. Regulated Rivers Research and Management 15: 199–210.

    Article  Google Scholar 

  • Wood, P. J., J. Toone, M. T. Greenwood & P. D. Armitage, 2005. The response of four lotic macroinvertebrate taxa to burial by sediments. Archiv für Hydrobiologie 163: 145–162.

    Article  Google Scholar 

  • Wright, J. F., P. D. Hiley, A. C. Cameron, M. E. Wigham & A. D. Berrie, 1983. A quantitative study of macroinvertebrates fauna of five biotopes in the river Lambourn. Berkshire England. Archiv für Hydrobiologie 96: 271–292.

    Google Scholar 

  • Yamada, H. & F. Nakamura, 2002. Effect of fine sediment deposition and channel works on periphyton biomass in the Makomanai River, Northern Japan. River Research and Applications 18: 481–493.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Alexander Kloimüller, Simon Führer and Nicolaus Clemenz for supportive field work. We want to thank Dr. Berthold Janecek for the determination of Chironomidae. Finally we would like to express our thanks to Erika Thaler Bakk. phil. for polishing the english text. This work was supported by the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded by the European Union under the 7th Framework Programme, grant agreement no: 603378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Graf.

Additional information

Handling editor: Sonja Stendera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graf, W., Leitner, P., Hanetseder, I. et al. Ecological degradation of a meandering river by local channelization effects: a case study in an Austrian lowland river. Hydrobiologia 772, 145–160 (2016). https://doi.org/10.1007/s10750-016-2653-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2653-6

Keywords

Navigation