Advertisement

Hydrobiologia

, Volume 772, Issue 1, pp 117–129 | Cite as

Local consumers are the first line to control biological invasions: a case of study with the whelk Stramonita haemastoma (Gastropoda: Muricidae)

  • A. Giacoletti
  • A. Rinaldi
  • M. Mercurio
  • S. Mirto
  • G. Sarà
Primary Research Paper

Abstract

The increasing spread of invasive species in the Mediterranean Sea determines several alterations in local food webs, changing the feeding habits of native organisms. The whelk Stramonita haemastoma is a widespread Mediterranean gastropod that consumes bivalves, barnacles and limpets. Previous studies showed a shift in its diet from the bivalve Mytilaster minimus to the invasive mussel Brachidontes pharaonis, presumably due to a higher energy gain. Here we tested whelks’ preference among natives and a novel prey, calculating the profitability ratio, and integrating those results with biochemical analysis on prey tissues and the routine metabolism of the whelks. Further, we used the scaled functional response as a theoretical tool to describe whelk ability to obtain energy from their environment by using four different prey species: B. pharaonis, Mytilus galloprovincialis, M. minimus and Patella caerulea. Whelks evidenced a Type II functional response for all prey, while Brachidontes displayed a lower attack rate and a higher handling time. Stramonita showed a greater preference for Brachidontes, that resulted as the prey with the higher energetic content, and the second most profitable after Patella. This suggests that the higher energy gain is behind the change in the predator’s diet, with possible effects on its energy budget.

Keywords

Invasive species Functional response Gastropod Mussels Stramonita haemastoma Brachidontes pharaonis 

Notes

Acknowledgments

PRIN TETRIS 2010 Grant (n. 2010PBMAXP_003) funded to Gianluca Sarà by the Italian Minister of Research and University (MIUR) supported this research. We thank Dr. Francesca Ape for her help in the biochemical analysis of prey and Anna Lossmann for the English fine tuning. The authors declare no competing financial interests.

Author contributions:

AG and GS conceived the idea and led the writing, AG and MM carried out all experiments in mesocosms, AG & AR performed modelling work and analysed output data, SM provided grant funds for AG while GS provided lab facilities at DISTEM and research funds.

References

  1. Abrams, P. A. & L. R. Ginzburg, 2000. The nature of predation: prey dependent, ratio dependent or neither? Trends in Ecology & Evolution 15: 337–341.CrossRefGoogle Scholar
  2. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  3. Basedow, T., 1994. Analysis of shells on beaches and rocky coasts of Europe: new findings on nutritional and population ecology of predatory marine gastropods (Muricidae and Naticidae). Zoologische Beiträge NF 36: 29–48.Google Scholar
  4. Bligh, E. G. & W. J. Dyer, 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.CrossRefPubMedGoogle Scholar
  5. Bolker, B.M. & R Development Core Team, 2014. bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.16. http://CRAN.R-project.org/package=bbmle. Accessed 06/01/2016.
  6. Brown, K. M., 1997. Size specific aspects of the foraging ecology of the southern oyster drill Stramonita haemastoma (Kool, 1987). Journal of Experimental Marine Biology and Ecology 214: 249–262.CrossRefGoogle Scholar
  7. Brown, K. M. & T. D. Richardson, 1987. Foraging ecology of the southern oyster drill Thais haemastoma (Grey): constraints on prey choice. Journal of Experimental Marine Biology and Ecology 114: 123–141.CrossRefGoogle Scholar
  8. Brown, K. M. & W. B. Stickle, 2002. Physical constraints on the foraging ecology of a predatory snail. Marine Freshwater Behaviour and Physiology 35: 157–166.CrossRefGoogle Scholar
  9. Burrows, M. T. & R. N. Hughes, 1989. Natural foraging of the dogwhelk, Nucella lapillus (Linnaeus); the weather and whether to feed. Journal of Molluscan Studies 55: 285–295.CrossRefGoogle Scholar
  10. Conover, R. J., 1966. Assimilation of organic matter by zooplankton. Limnology and Oceanography 11: 338–345.CrossRefGoogle Scholar
  11. Denny, M. W., L. J. H. Hunt, L. P. Miller & C. D. G. Harley, 2009. On the prediction of extreme ecological events. Ecological Monographs 79: 397–421. doi: 10.1890/08-0579.1.CrossRefGoogle Scholar
  12. Dick, J. T., K. Gallagher, S. Avlijas, H. C. Clarke, S. E. Lewis, S. Leung, D. Minchin, J. Caffrey, M. E. Alexander, C. Maguire, C. Harrod, N. Reid, N. R. Haddaway, K. D. Farnsworth, M. Penk & A. Ricciardi, 2013. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biological Invasions 15: 837–846.CrossRefGoogle Scholar
  13. Dodd, J. A., J. T. Dick, M. E. Alexander, C. MacNeil, A. M. Dunn & D. C. Aldridge, 2014. Predicting the ecological impacts of a new freshwater invader: functional responses and prey selectivity of the ‘killer shrimp’, Dikerogammarus villosus, compared to the native Gammarus pulex. Freshwater Biology 59: 337–352.CrossRefGoogle Scholar
  14. Dozey-Stenton, J. M. E., A. C. Brown & J. O’Riain, 1995. Effects of diet and starvation on feeding in the scavenging neogastropod Bullia digitalis (Dillwyn, 1817). Journal of Experimental Marine Biology Ecology 186: 117–132.CrossRefGoogle Scholar
  15. Drake, J. M. & D. M. Lodge, 2006. Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biological Invasions 8: 365–375.CrossRefGoogle Scholar
  16. Dubois, M., K. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.CrossRefGoogle Scholar
  17. Garton, D. W., 1986. Effect of prey size on the energy budget of a predatory gastropod, Thais haemastoma canaliculata (Gray). Journal of Experimental Marine Biology and Ecology 98: 21–33.CrossRefGoogle Scholar
  18. Garton, D. W. & W. B. Stickle, 1980. Effects of salinity and temperature on the predation rate of Thais haemastoma on Crassostrea virginica spat. Biological Bulletin 158: 49–57.CrossRefGoogle Scholar
  19. Hartree, E. F., 1972. Determination of proteins: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry 48: 422–427.CrossRefPubMedGoogle Scholar
  20. Hassell, M. P., 1978. The Dynamics of Arthropod Predator-prey Systems. Princeton University Press, Princeton.Google Scholar
  21. Holling, C. S., 1959. Some characteristics of simple types of predation and parasitism. Canadian Entomology 91: 385–398.CrossRefGoogle Scholar
  22. Huebner, J. D. & D. C. Edwards, 1981. Energy budget of the predatory marine Gastropod Polinices duplicates. Marine Biology 61: 221–226.CrossRefGoogle Scholar
  23. Juliano, S. A., 2001. Nonlinear curve fitting: predation and functional response curves. In Scheiner, S. M. & J. Gurevitch (eds.), Design and Analysis of Ecological Experiments, 2nd ed. Oxford University Press, Oxford: 178–196.Google Scholar
  24. Krebs, J. R. & N. B. Davies, 1993. An Introduction to Behavioural Ecology. Blackwell Scientific Publication, Oxford.Google Scholar
  25. Lang, B., B. C. Rall & U. Brose, 2012. Warming effects on consumption and intraspecific interference competition depend on predator metabolism. Journal of Animal Ecology 81: 516–523.CrossRefPubMedGoogle Scholar
  26. Leung, B., J. M. Drake & D. M. Lodge, 2004. Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology 85: 1651–1660.CrossRefGoogle Scholar
  27. Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout & F. A. Bazzaz, 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.CrossRefGoogle Scholar
  28. Maron, J. L. & M. Marler, 2008. Effects of native species diversity and resource additions on invader impact. American Naturalist 172: S18–S33.CrossRefPubMedGoogle Scholar
  29. Marsh, J. B. & D. B. Wenstein, 1966. A simple charring method for determination of lipids. Journal of Lipid Research 7: 574–576.PubMedGoogle Scholar
  30. Milazzo, M., F. Badalamenti, S. Riggio & R. Chemello, 2004. Patterns of algal recovery and small-scale effects of canopy removal as a result of human trampling on a Mediterranean rocky shallow community. Biological Conservation 117: 191–202.CrossRefGoogle Scholar
  31. Modica, A., D. Scilipoti, R. La Torre, A. Manganaro & G. Sarà, 2006. The effect of mariculture facilities on biochemical features of suspended organic matter (South Tyrrhenian, MED). Estuarine Shelf Coastal Science 66: 177–184.CrossRefGoogle Scholar
  32. Montalto, V., G. Sarà, P. Ruti, A. Dell’Aquila & B. Helmuth, 2014. Testing the effects of temporal data resolution on predictions of bivalve fitness in the context of global warming. Ecological Modelling 278: 1–14.CrossRefGoogle Scholar
  33. Okumuş, I. & H. P. Stirling, 1998. Seasonal variations in the meat weight, condition index and biochemical composition of mussels (Mytilus edulis L.) in suspended culture in two Scottish sea lochs. Aquaculture 159: 249–261.CrossRefGoogle Scholar
  34. Orban, E., G. Di Lena, T. Nevigato, I. Casini, A. Marzetti & R. Caproni, 2002. Seasonal changes in meat content, condition index and chemical composition of mussels (Mytilus galloprovincialis) cultured in two different Italian sites. Food Chemistry 77: 57–65.CrossRefGoogle Scholar
  35. Palmer, A. R., 1983. Growth rate as a measure of food value in thaidid gastropods: assumptions and implications for prey morphology and distribution. Journal of Experimental Marine Biology and Ecology 73: 95–124.CrossRefGoogle Scholar
  36. Palmer, A. R., 1984. Prey selection by thaidid gastropods: some observational and experimental field tests of foraging models. Oecologia (Berlin) 62: 162–172.CrossRefGoogle Scholar
  37. Paterson, R. A., T. A. Jaimie, J. T. A. Dick, D. W. Pritchard, M. Ennis, M. J. Hatcher & A. M. Dunn, 2015. Predicting invasive species impacts: a community module functional response approach reveals context dependencies. Journal of Animal Ecology 84: 453–463.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Peterson, A. T. & D. A. Vieglas, 2001. Predicting species invasions using ecological niche modelling: new approaches from bioinformatics attack a pressing problem. BioScience 51: 363–371.CrossRefGoogle Scholar
  39. Pritchard, D.W., 2014. Frair: functional response analysis in R. R package version 0.4. http://CRAN.R-project.org/package=frair. Accessed 06/01/2016.
  40. Prusina, I., G. Sarà, M. De Pirro, Y. W. Dong, G. D. Han, B. Glamuzina & G. A. Williams, 2014. Variations in physiological responses to thermal stress in congeneric limpets in the Mediterranean Sea. Journal of Experimental Marine Biology and Ecology 456: 34–40.CrossRefGoogle Scholar
  41. Pyke, G. H. & E. L. Charnov, 1977. Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology 52(02): 137–154.CrossRefGoogle Scholar
  42. R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  43. Richardson, T. D. & K. M. Brown, 1990. Wave exposure and prey size selection in an intertidal predator. Journal of Experimental Marine Biology and Ecology 142: 105–120.CrossRefGoogle Scholar
  44. Rice, D. L., 1982. The detritus nitrogen problem: new observation and perspectives from organic geochemistry. Marine Ecology Progress Series 9: 153–162.CrossRefGoogle Scholar
  45. Ricciardi, A., M. F. Hoopes, M. P. Marchetti & J. L. Lockwood, 2013. Progress toward understanding the ecological impact of non-native species. Ecological Monographs 83: 263–282.CrossRefGoogle Scholar
  46. Rilov, G., 1999. The whelk Stramonita haemastoma in the eastern Mediterranean rocky littoral: biotic and abiotic perspectives. Ph.D. dissertation, Tel-Aviv University.Google Scholar
  47. Rilov, G., Y. Benayahu & A. Gasith, 2001. Low abundance and skewed population structure of the whelk stramonita haemastoma along the israeli mediterranean coast. Marine Ecology Progress Series 218:189–202.CrossRefGoogle Scholar
  48. Rilov, G., A. Gasith & Y. Benayahu, 2002. Effect of an exotic prey on the feeding pattern of a predatory snail. Marine Environmental Research 54: 85–98.CrossRefPubMedGoogle Scholar
  49. Rovero, F., R. N. Hughes & G. Chelazzi, 1999. Effect of experience on predatory efficiency of dogwhelks. Animal Behaviour 57: 1241–1249.CrossRefPubMedGoogle Scholar
  50. Safriel, U. N., A. Gilboa, & T. Felsenburg, 1980. Distribution of rocky intertidal mussels in the Red Sea coasts of Sinai, the Suez Canal and the Mediterranean coast of Israel, with special reference to recent colonizers. Journal of Biogeography 39–62.Google Scholar
  51. Safriel, U. N. & Z. Sasson-Frosting, 1988. Can colonizing mussel outcompete indigenous mussel? Journal of Experimental Marine Biology and Ecology 117: 211–226.CrossRefGoogle Scholar
  52. Sarà, G. & M. De Pirro, 2011. Heart beat rate adaptations to varying salinity of two intertidal Mediterranean bivalves: the invasive Brachidontes pharaonis and the native Mytilaster minimus. Italian Journal of Zoology 78: 193–197.CrossRefGoogle Scholar
  53. Sarà, G., M. Kearney & B. Helmuth, 2011. Combining heat-transfer and energy budget models to predict local and geographic patterns of mortality in Mediterranean intertidal mussels. Chemistry and Ecology 27: 135–145.CrossRefGoogle Scholar
  54. Sarà, G., V. Palmeri, A. Rinaldi, V. Montalto & B. Helmuth, 2013. Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a study case with the bivalve Brachidontes pharaonis. Diversity and Distributions 19: 1235–1247.CrossRefGoogle Scholar
  55. Schoener, T. W., 1986. Mechanistic approaches to community ecology: a new reductionism. Integrative and Comparative Biology 26: 81–106.Google Scholar
  56. Seyhan, K., E. R. Mazlum, H. Emiral, S. Engin & S. Demirhan, 2003. Diel feeding periodicity, gastric emptying, and estimated daily food consumption of whelk (Rapana venosa) in the south eastern Black Sea (Turkey) marine ecosystem. Indian Journal of Marine Sciences 32: 249–251.Google Scholar
  57. Smith, D.J., 1983. Chemoattraction of the southern oyster drill Thais haemastoma towards the oyster Crassostrea virginica, as a function of temperature and salinity. M. SC. thesis, Louisiana State University, Baton Rouge, Louisiana.Google Scholar
  58. Sutherst, R. W., 2003. Prediction of species geographical ranges. Journal of Biogeography 30: 805–816.CrossRefGoogle Scholar
  59. Terborgh, J., 2010. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature. Island Press, Washington, DC.Google Scholar
  60. Toscano, B. J., B. Newsome & B. D. Griffen, 2014. Parasite modification of predator functional response. Oecologia 175: 345–352.CrossRefPubMedGoogle Scholar
  61. Twardochleb, L. A., M. Novak & J. W. Moore, 2012. Using the functional response of a consumer to predict biotic resistance to invasive prey. Ecological Applications 22: 1162–1171.CrossRefPubMedGoogle Scholar
  62. Underwood, A. J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge.Google Scholar
  63. Underwood, A. J. & K. R. Clarke, 2005. Solving some statistical problems in analyses of experiments on choices of food and on associations with habitats. Journal of Experimental Marine Biology and Ecology 318: 227–237.CrossRefGoogle Scholar
  64. Widdows, J. & F. Staff, 2006. Biological effects of contaminants: measurement of scope for growth in mussels. ICES Techniques in Marine Environmental Sciences 40: 1–30.CrossRefGoogle Scholar
  65. Winberg, G.G., 1971. Symbols, units and conversion factors in study of freshwaters productivity. International Biological Program: 23 pp.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. Giacoletti
    • 1
  • A. Rinaldi
    • 1
    • 2
  • M. Mercurio
    • 1
  • S. Mirto
    • 2
  • G. Sarà
    • 1
  1. 1.Dipartimento di Scienze della Terra e del MareUniversity of Palermo - Local UO CoNISMaPalermoItaly
  2. 2.IAMC-CNRCastellammare del GolfoItaly

Personalised recommendations