Skip to main content

Advertisement

Log in

Physical and chemical constraints limit the habitat window for an endangered mussel

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Development of effective conservation and restoration strategies for freshwater pearly mussels requires identification of environmental constraints on the distributions of individual mussel species. We examined whether the spatial distribution of the endangered Alasmidonta heterodon in Flat Brook, a tributary of the upper Delaware River, was constrained by water chemistry (i.e., calcium availability), bed mobility, or both. Alasmidonta heterodon populations were bracketed between upstream reaches that were under-saturated with respect to aragonite and downstream reaches that were saturated for aragonite during summer baseflow but had steep channels with high bed mobility. Variability in bed mobility and water chemistry along the length of Flat Brook create a “habitat window” for A. heterodon defined by bed stability (mobility index ≤1) and aragonite saturation (saturation index ≥1). We suggest the species may exist in a narrow biogeochemical window that is seasonally near saturation. Alasmidonta heterodon populations may be susceptible to climate change or anthropogenic disturbances that increase discharge, decrease groundwater inflow or chemistry, and thus affect either bed mobility or aragonite saturation. Identifying the biogeochemical microhabitats and requirements of individual mussel species and incorporating this knowledge into management decisions should enhance the conservation and restoration of endangered mussel species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert, R. & R. L. Limbeck, 2000. High flow management objectives for New Jersey non-coastal waters. Delaware River Basin Commission, West Trenton, NJ.

    Google Scholar 

  • Allen, D. C. & C. C. Vaughn, 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society 29: 383–394.

    Article  Google Scholar 

  • Ashton, M. J., 2010. Freshwater mussel records collected by the Maryland Department of Natural Resources’ Monitoring and Non-tidal Assessment Division (1995-2009): investigating environmental conditions and potential host fish of select species. Publication# 12-3112010-443. Annapolis, MD: Maryland Department of Natural Resources.

  • Bailey, R. C. & R. H. Green, 1988. Within-basin variation in shell morpphology and growth rate of a freshwater mussel. Canadian Journal of Zoology 66: 1704–1708.

    Article  Google Scholar 

  • Bauer, G., 1992. Variation in the life span and size of the freshwater pearl mussel. Journal of Animal Ecology 61: 425–436.

    Article  Google Scholar 

  • Bogan, A. E., 1993. Freshwater bivalve extinctions (Mollusca: Unionoida): a search for causes. American Zoologist 33: 599–609.

    Article  Google Scholar 

  • Bogan, A., 2008. Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater. Hydrobiologia 595: 139–147.

    Article  Google Scholar 

  • Boxall, G. D., G. R. Giannico & H. W. Li, 2008. Landscape topography and the distribution of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) in a high desert stream. Environmental Biology of Fishes 82: 71–84.

    Article  Google Scholar 

  • Candy, I., M. Stephens, J. Hancock & R. Waghorne, 2011. Palaeoenvironments of ancient humans in Britain: the application of oxygen and carbon isotopes to the reconstruction of Pleistocene environments. In Ashton, N. M., S. G. Lewis & C. B. Stringer (eds), The ancient human occupation of Britain. Developments in quaternary science, Vol. 14. Elsevier, Amsterdam: 23–37.

    Chapter  Google Scholar 

  • Cavalli, M., P. Tarolli, M. Lorenzo & G. Dalla Fontana, 2008. The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena 73: 249–260.

    Article  Google Scholar 

  • Clancy K., & K. Prestegaard, 2006. Quantifying particle organization in boulder bed streams. In Parker, G. & M. H. Garcia (eds), River, Coastal, and Estuarine Morphodynamics: RCEM 2005. Taylor & Francis Group, plc, London: 71–77

  • DuBoys, M. P., 1879. Le Rhone et les rivieres a lit affouillable. Annales de Pontset Chausses 18(sec.5): 141–195.

  • French, S. K. & J. D. Ackerman, 2014. Responses of newly settled juvenile mussels to bed shear stress: implications for dispersal. Freshwater Science 33: 46–55.

    Article  Google Scholar 

  • Gangloff, M. M. & J. W. Feminella, 2007. Stream channel geomorphology influences mussel abundance in southern Appalachian streams, U.S.A. Freshwater Biology 52: 64–74.

    Article  Google Scholar 

  • Goewert, A., D. Surge, S. J. Carpenter & J. Downing, 2007. Oxygen and carbon isotope ratios of Lampsilis cardium (Unionidae) from two streams in agricultural watersheds of Iowa, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 252: 637–648.

    Article  Google Scholar 

  • Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream hydrology: an introduction for ecologists. John Wiley & Sons Ltd, West Sussex.

    Google Scholar 

  • Green, M. A., M. E. Jones, C. L. Boudreau, R. L. Moore & B. A. Westman, 2004. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography 49: 727–734.

    Article  Google Scholar 

  • Green, M. A., G. G. Waldbusser, S. L. Reilly, K. Emerson & S. O’Donnell, 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnology and Oceanography 54: 1037–1047.

    Article  CAS  Google Scholar 

  • Green, M. A., G. G. Waldbusser, L. Hubazc, E. Cathcart & J. Hall, 2013. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuaries and Coasts 36: 18–27.

    Article  CAS  Google Scholar 

  • Haag, W. R., 2012. North American freshwater mussels: natural history, ecology, and conservation. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Haag, W. R. & A. M. Commens-Carson, 2008. Testing the assumption of annual shell ring deposition in freshwater mussels. Canadian Journal of Fisheries and Aquatic Sciences 65: 493–508.

    Article  Google Scholar 

  • Hardison, B. S. & J. B. Layzer, 2001. Relations between complex hydraulics and the localized distribution of mussels in three regulated rivers. Regulated Rivers: Research & Management 17: 77–84.

    Article  Google Scholar 

  • Hauer, C., G. Mandlburger & H. Habersack, 2009. Hydraulically related hydro-morphological units: description based on a new conceptual mesohabitat evaluation model (MEM) using LiDAR data as geometric input. River Research and Applications 25: 29–47.

    Article  Google Scholar 

  • Hornbach, D. J., V. J. Kurth & M. C. Hove, 2010. Variation in freshwater mussel shell sculpture and shape along a river gradient. The American Midland Naturalist 164: 22–36.

    Article  Google Scholar 

  • Howard, J. K. & K. M. Cuffey, 2003. Freshwater mussels in a California North Coast Range river: occurrence, distribution, and controls. Journal of the North American Benthological Society 22: 63–77.

    Article  Google Scholar 

  • Kesler, D. H., T. J. Newton & L. Green, 2007. Long-term monitoring of growth in the Eastern Elliptio, Elliptio complanata (Bivalvia: Unionidae), in Rhode Island: a transplant experiment. Journal of the North American Benthological Society 26: 123–133.

    Article  Google Scholar 

  • Kurihara, H., T. Asai, S. Kato & A. Ishimatsu, 2009. Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquatic Biology 4: 225–233.

    Article  Google Scholar 

  • Layzer, J. B. & L. M. Madison, 1995. Microhabitat use by freshwater mussels and recommendations for determining their instream flow needs. Regulated Rivers: Research & Management 10: 329–345.

    Article  Google Scholar 

  • Lefsky, M. A., W. B. Cohen, G. G. Parker & D. J. Harding, 2002. Lidar remote sensing for ecosystem studies. BioScience 52: 19–30.

    Article  Google Scholar 

  • Lellis, W. A., B. S. White, J. C. Cole, C. S. Johnson, J. L. Devers, E. V. S. Gray & H. S. Galbraith, 2013. Newly documented host fishes for the eastern elliptio mussel Elliptio complanata. Journal of Fish and Wildlife Management 4: 75–85.

    Article  Google Scholar 

  • Lenzi, M. A., L. Mao & F. Comiti, 2006. When does bedload transport begin in steep boulder-bed streams? Hydrological Processes 20: 3517–3533.

    Article  Google Scholar 

  • Leopold, L. B., M. G. Wolman & J. P. Miller, 1964. Fluvial processes in geomorphology. W.H. Freeman Company, San Francisco.

    Google Scholar 

  • Locke, A., J. M. Hanson, G. J. Klassen, S. M. Richardson & C. I. Aube, 2003. The damming of the Petitcodiac River: species, populations, and habitats lost. Northeastern Naturalist 10: 39–54.

    Article  Google Scholar 

  • Lydeard, C., R. H. Cowie, W. F. Ponder, A. E. Bogan, P. Bouchet, S. A. Clark, K. S. Cummings, T. J. Frest, O. Gargominy, D. G. Herbert, R. Hershler, K. E. Perez, B. Roth, M. Seddon, E. E. Strong & F. G. Thompson, 2004. The global decline of nonmarine mollusks. BioScience 54: 321–330.

    Article  Google Scholar 

  • Mackie, G. L. & L. A. Flippance, 1983. Intra- and interspecific variations in calcium content of freshwater mollusca in relation to calcium content of the water. Journal of Molluscan Studies 49: 204–212.

    Google Scholar 

  • Maloney, K. O., W. A. Lellis, R. M. Bennett & T. J. Waddle, 2012. Habitat persistence for sedentary organisms in managed rivers: the case for the federally endangered dwarf wedgemussel (Alasmidonta heterodon) in the Delaware River. Freshwater Biology 57: 1315–1327.

    Article  Google Scholar 

  • Marin, F., G. Luquet, B. Marie & D. Medakovic, 2007. Molluscan shell proteins: primary structure, origin, and evolution. Current Topics in Developmental Biology 80: 209–276.

    Article  Google Scholar 

  • McRae, S. E., J. D. Allan & J. B. Burch, 2004. Reach and catchment-scale determinants of the distribution of freshwater mussels (Bivalvia: Unionidae) in south-eastern Michigan, USA. Freshwater Biology 49: 127–142.

    Article  Google Scholar 

  • Michaelson, D. L. & R. J. Neves, 1995. Life history and habitat of the endangered dwarf wedgemussel Alasmidonta heterodon (Bivalvia: Unionidae). Journal of the North American Benthological Society 14: 324–340.

    Article  Google Scholar 

  • Morales, Y., L. J. Weber, A. E. Mynett & T. J. Newton, 2006. Effects of substrate and hydrodynamic conditions on the formation of mussel beds in a large river. Journal of the North American Benthological Society 25: 664–676.

    Article  Google Scholar 

  • Parker, B., 1978. Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. Journal of Fluid Mechanics 89: 127–146.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. BioScience 47: 769–784.

    Article  Google Scholar 

  • Prestegaard, K. L., 1983. Variables influencing water-surface slopes in gravel-bed streams at bankfull stage. Geological Society of America Bulletin 94: 673–678.

    Article  Google Scholar 

  • Pynnönen, K., 1991. Accumulation of 45Ca in the freshwater unionids Anodonta anatina and Unio tumidus, as influenced by water hardness, protons, and aluminum. The Journal of Experimental Zoology 260: 18–27.

    Article  Google Scholar 

  • Randhir, T. O. & A. G. Hawes, 2009. Watershed land use and aquatic ecosystem response: ecohydrologic approach to conservation policy. Journal of Hydrology 364: 182–199.

    Article  Google Scholar 

  • Rypel, A. L., W. R. Haag & R. H. Findlay, 2008. Validation of annual growth rings in freshwater mussel shells using cross dating. Canadian Journal of Fisheries and Aquatic Sciences 65: 2224–2232.

    Article  Google Scholar 

  • Salisbury, R. D., H. B. Kummel, C. E. Peet & G. N. Knapp, 1902. The glacial geology of New Jersey. MacCrellish & Quigley, Trenton, N.J.

    Google Scholar 

  • Shaver, R. B., 1993. Field vs. lab alkalinity and pH: effects on ion balance and calcite saturation index. Groundwater Monitoring & Remediation 13: 104–112.

    Article  CAS  Google Scholar 

  • Shields, A., 1936. Application of the theory of similarity and turbulence research to the bedload movement. Transl.QMSaleh. Mitt.Preuss.Vers.WasserbauSchiffbau, 26th, Berlin.

  • Smith, D. G., 1985. Recent range expansion of the freshwater mussel Anodonta implicata and its relationship to clupeid fish restoration in the Connecticut River system. Freshwater Invertebrate Biology 4: 105–108.

    Article  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology 51: 1016–1024.

    Article  CAS  Google Scholar 

  • Steuer, J. J., T. J. Newton & S. J. Zigler, 2008. Use of complext hydraulic variables to predict the distribution and density of unionids in a side channel of the Upper Mississippi River. Hydrobiologia 610: 67–82.

    Article  Google Scholar 

  • Strayer, D. L., 1993. Macrohabitats of freshwater mussels (Bivalvia:Unionacea) in streams of the north Atlantic Slope. Journal of the North American Benthological Society 12: 236–246.

    Article  Google Scholar 

  • Strayer, D. L., 1999. Use of flow refuges by unionid mussels in rivers. Journal of the North American Benthological Society 18: 468–476.

    Article  Google Scholar 

  • Strayer, D. L., 2008. Freshwater mussel ecology: a multifactor approach to distribution and abundance. University of California Press, Los Angeles.

    Book  Google Scholar 

  • Strayer, D. L. & J. Ralley, 1993. Microhabitat use by an assemblage of stream-dwelling unionaceans (Bivalvia), including two rare species of Alasmidonta. Journal of the North American Benthological Society 12: 247–258.

    Article  Google Scholar 

  • Strayer, D. L., S. J. Sprague & S. Claypool, 1996. A range-wide assessment of populations of Alasmidonta heterodon, an endangered freshwater mussel (Bivalvia:Unionidae). Journal of the North American Benthological Society 15: 308–317.

    Article  Google Scholar 

  • Strayer, D. L., J. A. Downing, W. R. Haag, T. L. King, J. B. Layzer, T. J. Newton & S. J. Nichols, 2004. Changing perspectives on pearly mussels, North America’s most imperiled animals. BioScience 54: 429–439.

    Article  Google Scholar 

  • Stumm, W. & J. Morgan, 1981. Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. John Wiley & Sons, New York.

    Google Scholar 

  • Thoma, D. P., S. C. Gupta, M. E. Bauer & C. E. Kirchoff, 2005. Airborne laser scanning for riverbank erosion assessment. Remote Sensing of Environment 95: 493–501.

    Article  Google Scholar 

  • Tóth, J., 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research 68: 4795–4812.

    Article  Google Scholar 

  • Tóth, J., 1970. A conceptual model of the groundwater regime and the hydrogeologic environment. Journal of Hydrology 10: 164–176.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency, 2011. A field-based aquatic life benchmark for conductivity in central Appalachian streams (final report). EPA/600/R-10/023F, U.S. Environmental Protection Agency, Washington, D.C.

  • U.S. Fish and Wildlife Service, 1993. Dwarf wedge mussel (Alasmidonta heterodon) recovery plan. U.S. Fish and Wildlife Service, Northeast Region, Hadley, MA.

  • U.S. Fish and Wildlife Service, 2007. Dwarf wedgemussel (Alasmidonta heterodon) 5-year review: summary and evaluation. U.S. Fish and Wildlife Service, Concord, NH.

  • Vaughn, C., K. Gido & D. Spooner, 2004. Ecosystem processes performed by unionid mussels in stream mesocosms: species roles and effects of abundance. Hydrobiologia 527: 35–47.

    Article  Google Scholar 

  • Wang, N., C. G. Ingersoll, D. K. Hardesty, C. D. Ivey, J. L. Kunz, T. W. May, F. J. Dwyer, A. D. Roberts, T. Augspurger, C. M. Kane, R. J. Neves & M. C. Barnhart, 2007. Acute toxicity of copper, ammonia, and chlorine to glochidia and juveniles of freshwater mussels (Unionidae). Environmental Toxicology and Chemistry 26: 2036–2047.

    Article  CAS  PubMed  Google Scholar 

  • Wilbur, K. M., 1964. Shell formation and regeneration. In Wilbur, K. M. & C. M. Yonge (eds), Physiology of Mollusca. Academic Press, New York: 243–282.

    Chapter  Google Scholar 

  • Wolman, M. G., 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union 35: 951–956.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Will Condon for assistance with field work. Comments by Teresa Newton, Andrew Elmore, Dale Honeyfield, Dan Spooner, and three anonymous reviewers improved the manuscript. Work was conducted under National Park Service Scientific Research and Collecting Permit number DEWA-2010-SCI-0017 and New Jersey Scientific Collecting Permit number SC 2010127. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cara A. Campbell.

Additional information

Handling editor: Sonja Stendera

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, C.A., Prestegaard, K.L. Physical and chemical constraints limit the habitat window for an endangered mussel. Hydrobiologia 772, 77–91 (2016). https://doi.org/10.1007/s10750-016-2642-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2642-9

Keywords

Navigation