Advertisement

Hydrobiologia

, Volume 771, Issue 1, pp 119–130 | Cite as

How does leaf litter chemistry influence its decomposition and colonization by shredder Chironomidae (Diptera) larvae in a tropical stream?

  • Luciene Aparecida Leite-Rossi
  • Victor Satoru Saito
  • Marcela Bianchessi Cunha-Santino
  • Susana Trivinho-Strixino
Primary Research Paper

Abstract

The nutritional quality of leaf litter can influence shredder chironomid larvae activities and affect leaf litter decomposition in tropical streams. The invasion of riparian areas by exotic plants may alter the nutritional quality of allochthonous material in streams, which would influence litter decomposition in these systems. We carried out an in situ experiment to verify the relationship between the initial leaf litter chemistry of two invasive plants (Hedychium coronarium and Pteridium arachnoideum) and a native one (Magnolia ovata) and the shredder chironomid larvae density and decomposition rates in a tropical stream. We found differences in the initial leaf litter chemistry and mass loss between leaf litter species. Differences in leaf litter chemistry influenced the colonization behavior by chironomid larvae. Larval densities differed among litter species, both taxonomically and functionally. The density of shredders was similar between M. ovata and H. coronarium, although they were colonized by different taxa: Endotribelos was more abundant in M. ovata and Stenochironomus in H. coronarium. P. arachnoideum was colonized by fewer shredders probably due to its high secondary compounds and lignin concentration. The invasion of riparian areas by exotic plants can alter the colonization of chironomid shredder assemblages and therefore the decomposition rates in aquatic systems.

Keywords

Aquatic macroinvertebrate Decomposition Endotribelos Invasive plants Lignin Stenochironomus 

Notes

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP) for the financial support and the scholarship awarded to the first author (Process 2012/13642-8). We are also grateful to three anonymous reviewers, the associate editor, Dr. Alaide Fonseca Gessner, Dr. Caroline Silva Neubern de Oliveira, and Dr. Irineu Bianchini Jr. for their valuable comments and suggestions that improved this manuscript.

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

10750_2015_2626_MOESM1_ESM.xlsx (25 kb)
Table S1 Relative abundance (± SD) of Chironomidae larvae from H. coronarium, M. ovata, and P. arachnoideum leaf litter. Functional feeding groups (FFG): SHR = shredders, COL = collectors (gatherers + filters), PRE = predators. Supplementary material 1 (XLSX 26 kb)

References

  1. Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer, Dordrecht.CrossRefGoogle Scholar
  2. Ardón, M. & C. M. Pringle, 2008. Do secondary compounds inhibit microbial and insect mediated leaf breakdown in a tropical rainforest stream, Costa Rica? Oecologia 155: 311–323.CrossRefPubMedGoogle Scholar
  3. Association of Official Agricultural Chemists, 1995. Official methods of analysis of the AOAC. Arlington: AOAC International 1: 1–30.Google Scholar
  4. ASTM D2974–87-14, 2014. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and other Organic Soils. American Society for Testing & Materials, West Conshohocken, PA.Google Scholar
  5. Bärlocher, F., 1997. Pitfalls of traditional techniques when studying decomposition of vascular plant remains in aquatic habitats. Limnetica 13: 1–11.Google Scholar
  6. Bianchini Jr, I., 2003. Modelos de crescimento e decomposição de macrófitas aquáticas. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e Manejo de Macrófitas Aquáticas. Maringá, EDUEM: 85–126.Google Scholar
  7. Biasi, C., A. M. Tonin, R. M. Restello & L. U. Hepp, 2013. The colonization of leaf litter by Chironomidae (Diptera): the influence of chemical quality and exposure duration in a subtropical stream. Limnologica 43: 427–433.CrossRefGoogle Scholar
  8. Borkent, A., 1984. The systematics and phylogeny of the Stenochironomus complex (Xestochironomus, Harrisius and Stenochironomus) (Diptera: Chironomidae). Memoirs of the Entomological Society of Canada 128: 1–269.CrossRefGoogle Scholar
  9. Boyero, L., L. A. Bamuta, L. Ratnaraiah, K. Schmidt & R. G. Pearson, 2012. Effects of exotic riparian vegetation on leaf breakdown by shredders: a tropical-temperate comparison. Freshwater Science 31: 296–303.CrossRefGoogle Scholar
  10. Callisto, M., J. F. Gonçalves Jr & M. A. S. Graça, 2007. Leaf litter as a possible food source for chironomids (Diptera) in Brazilian and Portuguese headwater streams. Revista Brasileira de Zoologia 24: 442–448.CrossRefGoogle Scholar
  11. Camacho, R., L. Boyero, A. Cornejo, A. Ibáñez & R. G. Pearson, 2009. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41: 625–632.CrossRefGoogle Scholar
  12. Canhoto, C. & M. A. S. Graça, 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial Ecology 37: 163–172.CrossRefPubMedGoogle Scholar
  13. Cazetta, E., P. Rubim, V. O. Lunardi, M. R. Francisco & M. Galetti, 2002. Frugivoria e dispersão de sementes de Magnolia ovata (Magnoliaceae) no sudeste brasileiro. Ararajuba 10: 199–206.Google Scholar
  14. Cheshire, K. I. M., L. Boyero & R. G. Pearson, 2005. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50: 748–769.CrossRefGoogle Scholar
  15. Choong, M. F., P. W. Lucas, J. S. Y. Ong, B. Pereira, H. T. W. Tan & I. M. Turner, 1992. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytologist 121: 597–610.CrossRefGoogle Scholar
  16. Coelho-Silva, J. F., 1967. Noções Sobre Análise de Alimentos. Impresa Universitária da Universidade Rural do Estado de Minas Gerais, Viçosa.Google Scholar
  17. Cuffney, T. F., J. B. Wallace & J. Lugthart, 1990. Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshwater Biology 23: 281–299.CrossRefGoogle Scholar
  18. Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in select streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40: 68–89.CrossRefGoogle Scholar
  19. Davis III, S. E., C. Corronado-Molina, D. L. Childers & J. W. Day Junior, 2003. Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquatic Botany 75: 199–215.CrossRefGoogle Scholar
  20. Dobson, M., A. Magana, J. M. Mathooko & F. K. Ndegwa, 2002. Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biology 47: 909–919.CrossRefGoogle Scholar
  21. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, Washington 28: 350–356.CrossRefGoogle Scholar
  22. Dudgeon, D. & K. K. Y. Wu, 1999. Leaf litter in a tropical stream: food or substrate for macroinvertebrates? Archiv für Hydrobiologie 146: 65–82.Google Scholar
  23. Ehrenfeld, J. G., 2010. Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics 41: 59–80.CrossRefGoogle Scholar
  24. Encalada, A. C., J. Calles, V. Ferreira, C. M. Canhoto & M. A. S. Graça, 2010. Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology 55: 1719–1733.Google Scholar
  25. Gliessman, S. R. & C. H. Muller, 1978. The allelopathic mechanisms of dominance in bracken (Pteridium aquilinum) in southern California. Journal of Chemical Ecology 4: 337–362.CrossRefGoogle Scholar
  26. Gonçalves Jr, J. F., F. A. Esteves & M. Callisto, 2003. Chironomids colonization on Nymphaea ampla L. detritus during a degradative ecological succession experiment in a Brazilian coastal lagoon. Acta Limnologica Brasiliensia 15: 21–27.Google Scholar
  27. Gonçalves, J. F., M. A. S. Graça & M. Callisto, 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biology 52: 1440–1451.CrossRefGoogle Scholar
  28. Gonçalves, J. F., R. S. Rezende, J. França & M. Callisto, 2012. Invertebrate colonization during leaf processing of native, exotic and artificial detritus in a tropical stream. Marine and Freshwater Research 63: 428–439.CrossRefGoogle Scholar
  29. Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams – a review. International Review of Hydrobiology 86: 383–393.CrossRefGoogle Scholar
  30. Graça, M. A. & C. Cressa, 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review of Hydrobiology 95: 27–41.CrossRefGoogle Scholar
  31. Graça, M. A., V. Ferreira, C. Canhoto, A. C. Encalada, F. Guerrero-Bolãno, K. M. Wantzen & L. Boyero, 2015. A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology 100: 1–12.CrossRefGoogle Scholar
  32. Haapala, A., T. Muotka & A. Markkola, 2001. Breakdown and macroinvertebrate and fungal colonization of alder, birch, and willow leaves in a boreal forest stream. Journal of the North American Benthological Society 20: 395–407.CrossRefGoogle Scholar
  33. Hepp, L. U., C. Biasi, S. V. Milesi, F. O. Veiga & R. M. Restello, 2008. Chironomidae (Diptera) larvae associated to Eucalyptus globulus and Eugenia uniflora leaf litter in a subtropical stream (Rio Grande do Sul, Brazil). Acta Limnologica Brasiliensia 20: 345–350.Google Scholar
  34. Howard, J. J., 1988. Leafcutting ant diet selection: relative influence of leaf chemistry and physical features. Ecology 69: 250–260.CrossRefGoogle Scholar
  35. Irons, J. G., M. W. Oswood, R. J. Stout & C. M. Pringle, 1994. Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshwater Biology 32: 401–411.CrossRefGoogle Scholar
  36. Jackson, J. K. & B. W. Sweeney, 1995. Egg and larval development times for 35 species of tropical stream insects from Costa Rica. Journal of North America Benthological Society 14: 115–130.CrossRefGoogle Scholar
  37. Janke, H. & S. Trivinho-Strixino, 2007. Colonization of leaf litter by aquatic macroinvertebrates: a study in a low order tropical stream. Acta Limnologica Brasiliensia 19: 109–115.Google Scholar
  38. Johnson, P. N., 2001. Vegetation recovery after fire on a southern New Zealand peatland. New Zealand Journal of Botany 39: 251–267.CrossRefGoogle Scholar
  39. Kissmann, K. G. & D. Groth, 1991. Plantas infestantes e nocivas. Basf Brasileira, São Paulo: 590–593.Google Scholar
  40. Koroiva, R., C. W. O. Souza, D. Toyama, F. Henrique-Silva & A. A. Fonseca-Gessner, 2013. Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae. Genetics and Molecular Research 12: 3421–3434.CrossRefPubMedGoogle Scholar
  41. Leite-Rossi, L. A. & S. Trivinho-Strixino, 2012. Are sugar cane leaf-detritus well colonized by aquatic macroinvertebrates? Acta Limnologica Brasiliensia 24: 303–313.CrossRefGoogle Scholar
  42. Leroy, C. J. & J. C. Marks, 2006. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology 51: 605–617.CrossRefGoogle Scholar
  43. Ligeiro, R., M. S. Moretti, J. F. Gonçalves Jr & M. Callisto, 2010. What is more important for invertebrate colonization in a stream with low-quality inputs: exposure time or leaf species? Hydrobiologia 654: 125–136.CrossRefGoogle Scholar
  44. Lorenzi, H., 2002. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Instituto Plantarum, Nova Odessa.Google Scholar
  45. Lorenzi, H. & H. Souza, 2001. Plantas Ornamentais. Instituto Plantarum, São Paulo.Google Scholar
  46. Lowman, M. D. & J. D. Box, 1983. Variation in leaf toughness and phenolic content among five species of Australian rain forest trees. Australian Journal of Ecology 8: 17–25.CrossRefGoogle Scholar
  47. Makkar, H. P. S., M. Bluemmel, N. K. Borowy & K. Becker, 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture 61: 161–165.CrossRefGoogle Scholar
  48. Marrs, R. H., S. W. Johnson & M. G. Le-Duc, 1998. Control of bracken and restoration of heathland VI. The response of bracken fronds to 18 years of continued bracken control or 6 years of control followed by recovery. Journal of Applied Ecology 35: 479–490.CrossRefGoogle Scholar
  49. Marrs, R. H., M. G. Le-Duc, R. J. Mitchell, D. Goddard, S. Paterson & R. J. Pakeman, 2000. The ecology of bracken: its role in succession and implications for control. Annals of Botany 85: 3–15.CrossRefGoogle Scholar
  50. Menéndez, M., E. Descals, T. Riera & O. Moya, 2011. Leaf litter breakdown in Mediterranean streams: effect of dissolved inorganic nutrients. Hydrobiologia 669: 143–155.CrossRefGoogle Scholar
  51. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque, Iowa.Google Scholar
  52. Mertens, D. R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. Journal of AOAC International 85: 1217–1240.PubMedGoogle Scholar
  53. Page, C. N., 1976. The taxonomy and phytogeography of bracken. Botanical Journal of the Linnean Society 73: 1–34.CrossRefGoogle Scholar
  54. Petersen Jr, R. C., 1992. The RCE: a riparian, channel, and environmental inventory for small streams in the agricultural landscape. Freshwater Biology 27: 292–306.CrossRefGoogle Scholar
  55. Pio Corrêa, M., 1984. Dicionário das Plantas Úteis do Brasil e das Exóticas Cultivadas. Instituto Brasileiro de Desenvolvimento Florestal, Rio de Janeiro.Google Scholar
  56. Portela, R. C. Q., D. M. S. Matos, L. P. Siqueira, M. I. G. Braz, L. Silva-Lima & R. H. Marrs, 2009. Variation in aboveground biomass and necromass of two invasive species in the Atlantic rainforest, Southeast Brazil. Acta Botanica Brasilica 23: 571–577.CrossRefGoogle Scholar
  57. Press, W. H., S. A. Teukolsky, W. T. Vetterling & B. P. Flannery, 1993. Numerical Recipes in C: the Art of Scientific Computing. Cambridge University Press, New York.Google Scholar
  58. Ramseyer, U. & M. Marchese, 2009. Leaf litter of Erythrina crista-galli L. (ceibo): trophic and substratum resources for benthic invertebrates in a secondary channel of the Middle Paraná River. Limnetica 28: 1–10.Google Scholar
  59. Robertson, J. B. & P. J. Van Soest, 1981. The detergent system of analysis and its application to human foods. In James, W. P. T. & O. Theander (eds), The Analysis of Dietary Fiber in Food. Marcel Deller, New York: 123–158.Google Scholar
  60. Roque, F. O. & S. Trivinho-Strixino, 2008. Four new species of Endotribelos Grodhaus, a common fallen fruit-dwelling chironomid genus in Brazilian streams (Diptera: Chironomidae: Chironominae). Studies on Neotropical Fauna and Environment 43: 191–207.CrossRefGoogle Scholar
  61. Royer, T. V., M. T. Monaghan & G. W. Minshall, 1999. Processing of native and exotic leaf litter in two Idaho (USA) streams. Hydrobiologia 400: 123–128.CrossRefGoogle Scholar
  62. Saito, V. S. & A. A. Fonseca-Gessner, 2014. Taxonomic compositions and feeding habits of Chironomidae in Cerrado streams (Southeast Brazil): impacts of land use changes. Acta Limnologica Brasiliensia 26: 35–46.CrossRefGoogle Scholar
  63. Sanseverino, A. M. & J. L. Nessimian, 2008. Larvas de Chironomidae (Diptera) em depósitos de folhiço submerso em um riacho de primeira ordem da Mata Atlântica (Rio de Janeiro, Brasil). Revista Brasileira de Entomologia 52: 95–104.CrossRefGoogle Scholar
  64. Sarruge, J. R. & H. P. Haag, 1974. Análises Químicas em Plantas. Escola Superior de Agricultura Luiz de Queiroz. Universidade de São Paulo, Piracicaba.Google Scholar
  65. Scheiner, S. M., 2001. Multiple response variables and multispecies interactions. In Scheiner, S. M. & J. Gurevitch (eds), Design and Analysis of Ecological Experiments. Oxford University Press, New York.Google Scholar
  66. Shieh, S. H., C. B. Hsu, C. P. Wang & P. S. Yang, 2007. Leaf breakdown in a subtropical stream riffle and its association with macroinvertebrates. Zoological Studies 46: 609–621.Google Scholar
  67. Silva, U. S. R. & D. M. Silva-Matos, 2006. The invasion of Pteridium aquilinum and the impoverishment of the seed bank in fire prone areas of Brazilian Atlantic Forest. Biodiversity and Conservation 15: 3035–3043.CrossRefGoogle Scholar
  68. Silva-Matos, D. M., R. O. Xavier, F. C. S. Tiberio & R. H. Marrs, 2012. A comparative study of resource allocation in Pteridium in different Brazilian ecosystems and its relationship with European studies. Brazilian Journal of Biology 74: 156–165.CrossRefGoogle Scholar
  69. Siqueira, T. & S. Trivinho-Strixino, 2005. Diversidade de Chironomidae (Diptera) em dois córregos de baixa ordem na região central do Estado de São Paulo, através da coleta de exúvias de pupa. Revista Brasileira de Entomologia 49: 531–534.CrossRefGoogle Scholar
  70. Strixino, G. & S. Trivinho-Strixino, 2006. Herpobentos e haptobentos de lagoas marginais da estação ecológica de Jataí (Luiz Antônio, SP). In Santos, J. E., J. S. R. Pires & L. E. Moschini (eds), Estudos Integrados em Ecossistema, Estação Ecológica de Jataí. EDUFSCar, São Carlos, SP: 20–44.Google Scholar
  71. Suberkropp, K. & E. Chauvet, 1995. Regulation of leaf breakdown by fungi in streams: influence of water chemistry. Ecology 76: 1433–1445.CrossRefGoogle Scholar
  72. Tanaka, M. O., A. C. A. Ribas & A. L. T. Souza, 2006. Macroinvertebrate succession during leaf litter breakdown in a perennial karstic river in Western Brazil. Hydrobiologia 568: 493–498.CrossRefGoogle Scholar
  73. Trevisan, A. & L. U. Hepp, 2007. Dinâmica de componentes químicos vegetais e fauna associada ao processo de decomposição de espécies arbóreas em um riacho do norte do Rio Grande do Sul, Brasil. Neotropical Biology and Conservation 2: 55–60.Google Scholar
  74. Trivinho-Strixino, S., 2014. Ordem Diptera. Família Chironomidae. Guia de identificação de larvas. In Hamada, N., J. L. Nessimian & R. B. Querino (eds), Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia, Vol. 1. Editora do INPA, Manaus: 457–660.Google Scholar
  75. Trivinho-Strixino, S. & G. Strixino, 1998. Chironomidae (Diptera) associados a troncos de árvores submersos. Revista Brasileira de Entomologia 41: 173–178.Google Scholar
  76. Tundisi, J. G., T. Matsumara-Tundisi, D. C. Pareschi, A. P. Luzia, P. H. Von Haeling & E. H. Frollini, 2008. The Tietê/Jacaré watershed: a case study in research and management. Estudos Avançados 22: 159–172.CrossRefGoogle Scholar
  77. Valdemarsen, T., C. O. Quintana, E. Kristensen & M. R. Flindt, 2014. Recovery of organic-enriched sediments through microbial degradation: implications for eutrophic estuaries. Marine Ecology Progress Series 503: 41–58.CrossRefGoogle Scholar
  78. Valery, L., H. Fritz, J. C. Lefeuvre & D. Simberloff, 2008. In search of a real definition of the biological invasion phenomenon itself. Biological Invasions 10: 1345–1351.CrossRefGoogle Scholar
  79. Vanotte, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. F. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 817–822.CrossRefGoogle Scholar
  80. Valente-Neto, F., R. Koroiva, A. A. Fonseca-Gessner & F. O. Roque, 2015. The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquatic Ecology 49: 115–125.CrossRefGoogle Scholar
  81. Watt, A. S., 1940. Contributions to the ecology of bracken (Pteridium aquilinum) I. The rhizome. New Phytologist 39: 401–422.CrossRefGoogle Scholar
  82. Wantzen, K. M. & R. Wagner, 2006. Detritus processing by invertebrate shredders: a neotropical-temperate comparison. Journal of the North American Benthological Society 25: 216–232.CrossRefGoogle Scholar
  83. Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses. Springer, New York.CrossRefGoogle Scholar
  84. Wright, E. L., C. R. Black, A. W. Cheesman, B. L. Turner & S. Sjögersten, 2013. Impact of simulated changes in water table depth on ex situ decomposition of leaf litter from a neotropical peatland. Wetlands 33: 217–226.CrossRefGoogle Scholar
  85. Yule, C. M., M. Y. Leong, K. C. Liew, L. Ratnarajah, K. Schimidt, H. M. Wong, R. G. Pearson & L. Boyero, 2009. Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. Journal of the North American Benthological Society 28: 404–415.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.PPG-ERN – Programa de Pós Graduação em Ecologia e Recursos NaturaisUniversidade Federal de São CarlosSão CarlosBrazil
  2. 2.Depto. de HidrobiologiaUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations