, Volume 781, Issue 1, pp 55–66 | Cite as

Moisture and soil parameters drive plant community assembly in Mediterranean temporary pools



For the Mediterranean plant diversity hotspot, temporary pools combine a highly variable, rainfall-dependent habitat with high and endangered plant diversity within small surfaces. They show alternating phases of drought and flooding, corresponding to the characteristic summer drought and winter rain of Mediterranean climate. This alternation is coupled with a moisture gradient that behaves as a selective filter on vascular plants. The main aim of our study was to show how plant functional traits respond to this moisture gradient, to build a greater understanding of the underlying functional mechanisms, and to formulate assembly rules. Our data showed that the frequency of plants with smaller seeds, later onset of flowering and hydrophytes increased with increasing water levels. These relations were uncovered by controlling for site effects using a mixed model approach. We discuss how our data can provide a basis to understand the limiting factors for plants with high conservation value, and what management strategies can be adopted in the context of environmental change.


Environmental filters Functional structure Assembly rules Moisture cycle 



This study was realized with the financial support of IKEA grant to IMBE 13/8/2009 and the APO Gévoclé grant by Région Provence Alpes Côte d’Azur. This work could not have been completed without the help of Port Marseille-Fos, Ludovic Cadenel and Laurence Gaud (SOMECA). We would also like to thank people providing access to sites, notably Dominique Guicheteau (Réserve Naturelle Nationale de la Plaine des Maures), Mr Barcelo, Mr Bonifay and Mrs and Mss Estienne d’Orves. We thank Patrick Grillas, Christine Valley-Coulomb, Cécile Albert, Raphaël Gros and Laurence Affre for helpful discussions; Saïd Fritas, Lenka Brousset and Daniel Pavon for help with field work, as well as Michael Paul for proof reading the English of a previous version.


  1. Ackerly, D. D. & W. Cornwell, 2007. A trait-based approach to community assembly: partitioning of species trait values into within-and among-community components. Ecol Lett 10(2): 135–145.CrossRefPubMedGoogle Scholar
  2. Albert, C. H., W. Thuiller, N. G. Yoccoz, A. Soudant, F. Boucher, P. Saccone & S. Lavorel, 2010. Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98: 604–613.CrossRefGoogle Scholar
  3. Albert, C. H., F. Grassein, F. M. Schurr, G. Vieilledent & C. Violle, 2011. When and how should intraspecific variability be considered in trait-based plant ecology? Perspect Plant Ecol Evol Syst 13: 217–225.CrossRefGoogle Scholar
  4. Bagella, S. & M. C. Caria, 2012. Diversity and ecological characteristics of vascular flora in Mediterranean temporary pools. C R Biol 335(1): 69–76.CrossRefPubMedGoogle Scholar
  5. Baker, H. G., 1972. Seed weight in relation to environmental conditions in California. Ecology 53(6): 997–1010.CrossRefGoogle Scholar
  6. Barbour, M. G., A. I. Solomeshch, R. F. Holland, C. W. Witham, R. L. Macdonald, S. S. Cilliers, J. A. Molina, J. J. Buck & J. M. Hillman, 2005. Vernal pool vegetation of California: communities of long-inundated deep habitats. Phytocoenologia 35: 177–200.CrossRefGoogle Scholar
  7. Bauder, E. T., 2000. Inundation effects on small-scale plant distributions in San Diego, California vernal pools. Aquat Ecol 34: 43–61.CrossRefGoogle Scholar
  8. Bensettiti, Gaudillat, Haury & (coord.), 2002. Cahiers d’habitats Natura 2000. Connaissance et gestion des habitats et des espèces d’intérêt communautaires. Tome 3-Habitats humides. La Documentation Française, Paris.Google Scholar
  9. Bernard-Verdier, M., M. L. Navas, M. Vellend, C. Violle, A. Fayolle & E. Garnier, 2012. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J Ecol 100(6): 1422–1433.CrossRefGoogle Scholar
  10. Bolòs, O., J. Vigo, R. M. Masalles & J. M. Ninot, 1993. Flora manual dels països catalans. Editorial Pòrtic sa.Google Scholar
  11. Brock, M. A., 2011. Persistence of seed banks in Australian temporary wetlands. Freshwat Biol 56(7): 1312–1327.CrossRefGoogle Scholar
  12. Caria, M., G. Capra, A. Buondonno, G. Seddaiu, S. Vacca & S. Bagella, 2013. Small-scale patterns of plant functional types and soil features within Mediterranean temporary ponds. Plant Biosyst Int J Deal Asp Plant Biol 149(2): 1–11.Google Scholar
  13. Clevering, O. A., 1997. Effects of litter accumulation and water table on morphology and productivity of Phragmites australis. Wetlands Ecol Manag 5: 275–287.CrossRefGoogle Scholar
  14. Collinge, S. K. & C. Ray, 2009. Transient patterns in the assembly of vernal pool plant communities. Ecology 90(12): 3313–3323.CrossRefPubMedGoogle Scholar
  15. Cornwell, W. K. & D. D. Ackerly, 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79(1): 109–126.CrossRefGoogle Scholar
  16. Coste, H., 1937. Flore descriptive et illustrée de la France, de la Corse et des contrées limitrophes. Librairie des sciences et des arts ed., Paris.Google Scholar
  17. Deil, U., 2005. A review on habitats, plant traits and vegetation of ephemeral wetlands—a global perspective. Phytocoenologia 35(2–3): 533–706.CrossRefGoogle Scholar
  18. Deso, G., S. Bence, F. Pawlowski & J. Volant, 2010. Plate-forme IKEA commune de Fos-sur-Mer Audit écologique ciblé de fin de printemps année 2010. ECO-MED, Marseille.Google Scholar
  19. Diamond, J. M., 1975. Assembly of Species Communities. In Cody, M. L. & J. M. Diamond (eds.), Ecology and evolution of communities. Harvard University Press, Cambridge,: 342–444.Google Scholar
  20. Dolédec, S., D. Chessel, C. Ter Braak & S. Champely, 1996. Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3(2): 143–166.CrossRefGoogle Scholar
  21. Dray, S. & A.-B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4): 1–20.CrossRefGoogle Scholar
  22. Dray, S., D. Chessel & J. Thioulouse, 2003. Co-inertia analysis and the linking of ecological data tables. Ecology 84(11): 3078–3089.CrossRefGoogle Scholar
  23. Emery, N. C., M. L. Stanton & K. J. Rice, 2009. Factors driving distribution limits in an annual plant community. New Phytol 181: 734–747.CrossRefPubMedGoogle Scholar
  24. Erwin, K. L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecol Manag 17: 71–84.CrossRefGoogle Scholar
  25. Faist, A. M., S. Ferrenberg & S. K. Collinge, 2013. Banking on the past: seed banks as a reservoir for rare and native species in restored vernal pools. AoB Plants 5: 1–11.CrossRefGoogle Scholar
  26. Fournillon, A., 2012. Modélisation géologique 3D et hydrodynamique appliquées aux réservoirs carbonatés karstiques: caractérisation des ressources en eau souterraine de l’Unité du Beausset (SE France). Aix-Marseille Université.Google Scholar
  27. Gachet, S., E. Véla & T. Tatoni, 2005. BASECO: a floristic and ecological database of Mediterranean French flora. Biodivers Conserv 14(4): 1023–1034.CrossRefGoogle Scholar
  28. Gamisans, J. & D. Jeanmonod, 2007. Flora corsica. Edisud Aix-en-Provence.Google Scholar
  29. Garnier, É. & M.-L. Navas, 2013. Diversité fonctionnelle des plantes: traits des organismes, structure des communautés, propriétés des écosystèmes. De Boeck.Google Scholar
  30. Garnier, E., J. Cortez, G. Billès, M.-L. Navas, C. Roumet, M. Debussche, G. Laurent, A. Blanchard, D. Aubry & A. Bellmann, 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85(9): 2630–2637.CrossRefGoogle Scholar
  31. Grillas, P., P. Gauthier, N. Yavercovski & C. Perennou, 2004. Les mares temporaires méditerranéennes (volume 1): Enjeux de conservation, fonctionnement et gestion, Vol 1. Station biologique de la Tour du Valat.Google Scholar
  32. Grime, J., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111: 1169–1194.CrossRefGoogle Scholar
  33. Hill, M. O. & A. J. E. Smith, 1976. Principle component analysis of taxonomic data with multi-state discrete characters. Taxon 25: 249–255.CrossRefGoogle Scholar
  34. Hobson, W. A. & R. A. Dahlgren, 1998. Soil forming processes in vernal pools of northern California, Chico area. Ecol Conserv ManagVernal Pool Ecosyst 46: 24–37.Google Scholar
  35. Kalra, Y. P. & D. G. Maynard, 1991. Methods manual for forest soil and plant analysis, Can. For. Serv. North For. Cent. Inf. Rep: 319 pp.Google Scholar
  36. Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3(2): 157–164.CrossRefGoogle Scholar
  37. Keeley, J. E., 1990. Photosynthesis in Vernal Pool Macrophytes: Relation of Structure and Function. In Ikeda, J. H. & R. A. Schlising (eds), Vernal pool plants: their habitat and biology. California State University, Chico: 61–88.Google Scholar
  38. Keeley, J. E., 1999. Photosynthetic pathway diversity in a seasonal pool community. Funct Ecol 13: 106–118.CrossRefGoogle Scholar
  39. Keeley, J. E. & P. H. Zedler, 1998. Characterization and Global Distribution of Vernal Pools. In Witham, C. W., et al. (eds.), Ecology, conservation, and management of vernal pool ecosystems. California Native Plant Society, Sacramento: 1–14.Google Scholar
  40. Kleyer, M., 2002. Validation of plant functional types across two contrasting landscapes. J Veg Sci 13: 167–178.CrossRefGoogle Scholar
  41. Knevel, I., 2004. The LEDA traitbase collecting and measuring standards of life-history traits of the Northwest European Flora. University of Community and Conservation Ecology GroupGoogle Scholar
  42. Lamont, B. B. & P. K. Groom, 2013. Seeds as a source of carbon, nitrogen, and phosphorus for seedling establishment in temperate regions: a synthesis. Am J Plant Sci 4: 30–40.CrossRefGoogle Scholar
  43. Lavorel, S., S. McIntyre, J. Landsberg & T. D. A. Forbes, 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12: 474–478.CrossRefPubMedGoogle Scholar
  44. Marnotte, P., A. Carrara, E. Dominati & F. Girardot, 2006. Plantes des rizières de Camargue. Paris: Centre de coopération internationale en recherche agronomique pour le développement /Arles: Centre français du riz, Parc naturel régional de Camargue, éditions Quae, coll. Guide pratique. 262 p.Google Scholar
  45. McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4): 178–185.CrossRefPubMedGoogle Scholar
  46. Médail, F. & P. Quézel, 1999. Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13(6): 1510–1513.CrossRefGoogle Scholar
  47. Médail, F., P. Roche, T. Tatoni & F. Magnin, 1998. Ecologie et conservation des mares temporaires méditerranéennes: l’exemple des mares de la Réserve Naturelle de Roque-Haute (Hérault, France). Ecol Mediterr 24(2): 105–235.Google Scholar
  48. Molinier, R. & P. Müller, 1938. La dissémination des espèces végétales. impr, Paris.Google Scholar
  49. Mommer, L., J. P. Lenssen, H. Huber, E. J. Visser & H. De Kroon, 2006. Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. J Ecol 94: 1117–1129.CrossRefGoogle Scholar
  50. Morin, X., D. Viner & I. Chuine, 2008. Tree species range shifts at a continental scale: new predictive insights from a processâ__based model. J Ecol 96(4): 784–794.CrossRefGoogle Scholar
  51. Nakagawa, S. & H. Schielzeth, 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2): 133–142.CrossRefGoogle Scholar
  52. O’Geen, A. T., W. A. Hobson, R. A. Dahlgren & D. B. Kelley, 2008. Evaluation of soil properties and hydric soil indicators for vernal pool catenas in California. Soil Sci Soc Am J 72(3): 727–740.CrossRefGoogle Scholar
  53. Oksanen, J., F. G. Blanchet, R. Kindt, M. J. Oksanen & M. Suggests, 2013. Package ‘vegan’. Community ecology package Version 2:0-0Google Scholar
  54. Pinheiro, J., D. Bates & R. Maintainer, 2014. Package ‘nlme’.Google Scholar
  55. R Developpment Core Team, 2009. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at www.R-project.org.
  56. Raunkiaer, C., 1934. The life forms of plants and statistical plant geography. Clarendon Press, Oxford.Google Scholar
  57. Rhazi, L., 2001. Etude de la végétation des mares temporaires et l’impact des activités humaines sur la richesse et la conservation des espèces rares au Maroc. These de Doctorat, Université Hassan II Faculté des Sciences Ain Chock, Casablanca.Google Scholar
  58. Rocarpin, P., 2013. Gradient hydrologique et traits fonctionnels: le cas des mares temporaires méditerranéennes. Aix Marseille Université, Marseille.Google Scholar
  59. Rowell, D. P., 2005. A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability. Clim Dyn 25(7–8): 837–849.CrossRefGoogle Scholar
  60. Royal Botanic Gardens, Kew., 2014. Annual report and accounts 2012–2013. 51 p. https://www.gov.uk/government/publications.
  61. Saatkamp, A., L. Affre, T. Dutoit & P. Poschlod, 2009. The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses. Ann Bot 104: 715–724.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Saatkamp, A., C. Römermann & T. Dutoit, 2010. Plant functional traits show non-linear response to grazing. Folia Geobot 45(3): 239–252.CrossRefGoogle Scholar
  63. Saatkamp, A., L. Affre, T. Baumberger, P. J. Dumas, A. Gasmi, S. Gachet & F. Arène, 2011. Soil depth detection by seeds and diurnally fluctuating temperatures: different dynamics in 10 annual plants. Plant Soil 349: 331–340.CrossRefGoogle Scholar
  64. Schimper, A. F. W., 1898. Pflanzengeographie auf physiologischer Grundlage, 1st ed. Gustav Fischer, Jena.Google Scholar
  65. Shipley, B., D. Vile & E. Garnier, 2006. From plant traits to plant communities a statistical mechanistic apporach to biodiversity. Science 314: 812–814.CrossRefPubMedGoogle Scholar
  66. Silvertown, J., M. E. Dodd, D. J. G. Gowing & J. O. Mountford, 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400(6739): 61–63.CrossRefGoogle Scholar
  67. Spencer, S. C. & L. H. Rieseberg, 1998. Evolution of Amphibious Vernal Pool Specialist Annuals: Putative Vernal Pool Adaptive Traits in Navarretia (Polemoniaceae). In Witham, C. W., et al. (eds.), Ecology, conservation, and management of vernal pool ecosystems. CNPS, Sacramento: 76–85.Google Scholar
  68. Stone, D. R., 1990. Vernal Pool Plants: Their Habitat and Biology. Studies from the Herbarium. In Ikeda, D. H. & R. A. Schlising (eds.), California’s endemic vernal pool plants: some factors influencing their rarity and endangerment. California State University, Chico: 89–108.Google Scholar
  69. Thuiller, W., S. Lavorel, G. Midgley, S. Lavergne & T. Rebelo, 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85(6): 1688–1699.CrossRefGoogle Scholar
  70. Tison, J.-M., P. Jauzein, H. Michaud & H. Michaud, 2014. Flore de la France méditerranéenne continentale. Naturalia Publications, Turriers.Google Scholar
  71. Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116(5): 882–892.CrossRefGoogle Scholar
  72. Violle, C., A. Bonis, M. Plantegenest, C. Cudennec, C. Damgaard, B. Marion, D. Le Cœur & J.-B. Bouzillé, 2011. Plant functional traits capture species richness variations along a flooding gradient. Oikos 120: 389–398.CrossRefGoogle Scholar
  73. Voesenek, L., T. D. Colmer, R. Pierik, F. F. Millenaar & A. J. M. Peeters, 2006. How plants cope with complete submergence. New Phytol 170: 213–226.CrossRefPubMedGoogle Scholar
  74. von Humboldt, A. & A. Bonpland, 1807. Essai sur la géographie des plantes. Fr. Schoell, Paris.Google Scholar
  75. Weiher, E. & P. Keddy, 2001. Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge.Google Scholar
  76. Westoby, M., 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199(2): 213–227.CrossRefGoogle Scholar
  77. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas & R. Villar, 2004. The worldwide leaf economics spectrum. Nature 428(6985): 821–827.CrossRefPubMedGoogle Scholar
  78. Zedler, P. H., 1990. Life Histories of Vernal Pool Vascular Plants. In Ikeda, J. H. & R. A. Schlising (eds.), Vernal pool plants: their habitat and biology. California State University, Chico: 123–146.Google Scholar
  79. Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • P. Rocarpin
    • 1
  • S. Gachet
    • 1
  • K. Metzner
    • 1
  • A. Saatkamp
    • 1
  1. 1.Aix Marseille Université, IMBE UMR 7263, CNRS, IRD, Université d’AvignonMarseilleFrance

Personalised recommendations