, Volume 770, Issue 1, pp 117–128 | Cite as

Comparison of genetic diversity in four Typha species (Poales, Typhaceae) from China

  • Beibei Zhou
  • Dan Yu
  • Zhenjie Ding
  • Xinwei Xu
Primary Research Paper


Life history traits play an important role in the level and distribution of genetic diversity, and comparing closely related species with similar life histories can provide insight into the determinants of genetic variation in plant populations. In this study, we used variations of one chloroplast DNA fragment, one nuclear gene, and six microsatellites to compare the levels and distributions of genetic diversity in four widespread Typha species from China. Surveys were conducted on 898 individuals from 120 sites. The individuals of all four species formed monophyletic clades and distinct genetic clusters, suggesting no hybridization between T. angustifolia and T. latifolia in China. The levels of cpDNA nucleotide diversity followed the order T. latifolia > T. laxmannii > T. angustifolia > T. orientalis, whereas the genetic diversity in nDNA and nSSR of T. laxmannii and T. angustifolia was higher than that of T. latifolia. In T. angustifolia, T. laxmannii, and T. orientalis, more than half of genetic variation occurred within populations, and in T. latifolia, most of genetic variation occurred among populations. The variation in the levels and distributions of genetic diversity among the four species can be attributed to differences in inflorescence characteristics which either limit or enhanced outcrossing rates.


Typha Genetic diversity Chloroplast DNA Nuclear DNA Hybridization China 



This study was supported by grants from the National Natural Science Foundation of China to Xinwei Xu (31070190 and 31270265) and Dan Yu (30930011). We thank the members of Dan Yu’s group for field assistance.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2015_2574_MOESM1_ESM.docx (66 kb)
Supplementary material 1 (DOCX 65 kb) Online Resource 1: Collection information, haplotype distribution and measures of diversity of Typha populations
10750_2015_2574_MOESM2_ESM.docx (34 kb)
Supplementary material 2 (DOCX 34 kb) Online Resource 2: Six morphological characteristics of four Typha species


  1. Alm, C. G. & H. Weimarck, 1933. Typha angustifolia L. × latifolia L. funnen i Skåne. Botaniska Notiser 1933: 279–284.Google Scholar
  2. An, J. X., Q. Wang, J. Yang & J. Q. Liu, 2012. Phylogeographic analyses of Phragmites australis in China: native distribution and habitat preference of the haplotype that invaded North America. Journal of Systematics and Evolution 50: 334–340.CrossRefGoogle Scholar
  3. Ball, D. & J. R. Freeland, 2013. Synchronous flowering times and asymmetrical hybridization in Typha latifolia and T. angustifolia in northeastern North America. Aquatic Botany 104: 224–227.CrossRefGoogle Scholar
  4. Bohonak, A. J., 2002. IBD (isolation by distance): a program for analyses of isolation by distance. Journal of Heredity 93: 153–154.CrossRefPubMedGoogle Scholar
  5. Carrió, E., A. D. Forrest, J. Güemes & P. Vargas, 2010. Evaluating species nonmonophyly as a trait affecting genetic diversity: a case study of three endangered species of Antirrhinum L. (Scrophulariaceae). Plant Systematics and Evolution 288: 43–58.CrossRefGoogle Scholar
  6. Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.CrossRefPubMedGoogle Scholar
  7. Cook, C. D. K., 1990. Aquatic plant book. SPB Academic Publishing, Hague.Google Scholar
  8. Ekstam, B. & Å. Forseby, 1999. Germination response of Phragmites australis and Typha latifolia to diurnal fluctuations in temperature. Seed Science Research 9: 157–163.CrossRefGoogle Scholar
  9. Ennos, R. A., 1994. Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72: 250–259.CrossRefGoogle Scholar
  10. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.PubMedCentralGoogle Scholar
  11. Falush, D., M. Stephens & J. K. Pritchard, 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.PubMedPubMedCentralGoogle Scholar
  12. Fér, T., 2008. Study of plant dispersal in river corridors using molecular markers. Ph.D. dissertation, Charles University Prague, Prague.Google Scholar
  13. Figert, E., 1890. Botanische Mitteilungen aus Schlesien. III. Typha latifolia × Typha angustifolia. Deutsche Botanische Monatsschrift 8: 55–57.Google Scholar
  14. Galeuchet, D. J., R. Husi, C. Perret, M. Fischer & B. Gautschi, 2002. Characterization of microsatellite loci in Lychnis flos-cuculi (Caryophyllaceae). Molecular Ecology Notes 2: 491–492.CrossRefGoogle Scholar
  15. Goudet, J., 1995. FSTAT: a computer program to calculate statistics, version 1.2. Journal of Heredity 86: 485–486.Google Scholar
  16. Hamrick, J. L. & M. J. W. Godt, 1989. Allozyme diversity in plant species. In Brown, A. H. D., M. T. Clegg, A. L. Kahler & B. S. Weir (eds), Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland: 43–63.Google Scholar
  17. Hamrick, J. L. & M. J. W. Godt, 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351: 1291–1298.Google Scholar
  18. Hamrick, J. L., M. Godt & S. Sherman-Broyles, 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124.CrossRefGoogle Scholar
  19. Hartl, D. L., 2000. A primer of population genetics. Sinaue, Sunderland.Google Scholar
  20. Katoh, K., K. Misawa, K. I. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Keane, B., S. Pelikan, G. P. Toth, M. K. Smith & S. H. Rogstad, 1999. Genetic diversity of Typha latifolia (Typhaceae) and the impact of pollutants examined with tandem-repetitive DNA probes. American Journal of Botany 86: 1226–1238.CrossRefPubMedGoogle Scholar
  22. Kirk, H., C. Connolly & J. R. Freeland, 2011. Molecular genetic data reveal hybridization between Typha angustifolia and Typha latifolia across a broad spatial scale in eastern North America. Aquatic Botany 95: 189–193.CrossRefGoogle Scholar
  23. Krattinger, K., 1975. Genetic mobility in Typha. Aquatic Botany 1: 57–70.CrossRefGoogle Scholar
  24. Kuehn, M. M., J. E. Minor & B. N. White, 1999. An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers. Molecular Ecology 8: 1981–1990.CrossRefPubMedGoogle Scholar
  25. Lamote, V., M. De Loose, E. Van Bockstaele & I. Roldán-Ruiz, 2005. Evaluation of AFLP markers to reveal genetic diversity in Typha. Aquatic Botany 83: 296–309.CrossRefGoogle Scholar
  26. Lee, D. W., 1975. Population Variation and Introgression in North American Typha. Taxon 24: 633–641.CrossRefGoogle Scholar
  27. Lee, D. W. & D. E. Fairbrothers, 1973. Enzyme differences between adjacent hybrid and parent populations of Typha. Bulletin of the Torrey Botanical Club 100: 3–11.CrossRefGoogle Scholar
  28. Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.CrossRefPubMedGoogle Scholar
  29. Loveless, M. D. & J. L. Hamrick, 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 65–95.CrossRefGoogle Scholar
  30. Luther, H. E., 1947. Typha angustifolia × latifolia L. (T. × glauca Godr.) I Ostfennoskandien. Memoranda Societatis Flora et Fauna Fennica 23: 66–75.Google Scholar
  31. Martins, E., R. Lamont, G. Martinelli, C. Lira-Medeiros, A. Quinet & A. Shapcott, 2014. Genetic diversity and population genetic structure in three threatened Ocotea species (Lauraceae) from Brazil’s Atlantic Rainforest and implications for their conservation. Conservation Genetics 16: 1–14.CrossRefGoogle Scholar
  32. Mashburn, S. J., R. R. Sharitz & M. H. Smith, 1978. Genetic variation among Typha populations of the southeastern United States. Evolution 32: 681–685.CrossRefGoogle Scholar
  33. Mateu-Andrés, I. & L. De Paco, 2006. Genetic diversity and the reproductive system in related species of Antirrhinum. Annals of Botany 98: 1053–1060.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Na, H. R., C. Kim & H.-K. Choi, 2010. Genetic relationship and genetic diversity among Typha taxa from East Asia based on AFLP markers. Aquatic Botany 92: 207–213.CrossRefGoogle Scholar
  35. Nauta, M. J. & F. J. Weissing, 1996. Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics 143: 1021–1032.PubMedPubMedCentralGoogle Scholar
  36. Ng, W. L., Y. Onishi, N. Inomata, K. M. Teshima, H. T. Chan, S. Baba, S. Changtragoon, I. Z. Siregar & A. E. Szmidt, 2015. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conservation Genetics 16: 137–150.CrossRefGoogle Scholar
  37. Nowińska, R., B. Gawrońska, A. Czarna & M. Wyrzykiewicz-Raszewska, 2014. Typha glauca Godron and its parental plants in Poland: taxonomic characteristics. Hydrobiologia 737: 163–181.CrossRefGoogle Scholar
  38. Nybom, H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143–1155.CrossRefPubMedGoogle Scholar
  39. Petit, R. J., J. Duminil, S. Fineschi, A. Hampe, D. Salvini & G. G. Vendramin, 2005. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology 14: 689–701.CrossRefPubMedGoogle Scholar
  40. Pons, O. & R. Petit, 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144: 1237–1245.PubMedPubMedCentralGoogle Scholar
  41. Robuchon, M., L. Le Gall, S. Mauger & M. Valero, 2014. Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Molecular Ecology 23: 2669–2685.CrossRefPubMedGoogle Scholar
  42. Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228.PubMedPubMedCentralGoogle Scholar
  43. Selbo, S. M. & A. A. Snow, 2004. The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquatic Botany 78: 361–369.CrossRefGoogle Scholar
  44. Sharitz, R. R., S. A. Wineriter, M. H. Smith & E. H. Liu, 1980. Comparison of isozymes among Typha species in the eastern United States. American Journal of Botany 67: 1297–1303.CrossRefGoogle Scholar
  45. Shaw, J., E. B. Lickey, J. T. Beck, S. B. Farmer, W. Liu, J. Miller, K. C. Siripun, C. T. Winder, E. E. Schilling & R. L. Small, 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142–166.CrossRefPubMedGoogle Scholar
  46. Shaw, J., E. B. Lickey, E. E. Schilling & R. L. Small, 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275–288.CrossRefPubMedGoogle Scholar
  47. Skrede, I., L. Borgen & C. Brochmann, 2009. Genetic structuring in three closely related circumpolar plant species: AFLP versus microsatellite markers and high-arctic versus arctic–alpine distributions. Heredity 102: 293–302.CrossRefPubMedGoogle Scholar
  48. Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.CrossRefPubMedGoogle Scholar
  49. Smith, S. G., 1967. Experimental and natural hybrids in North American Typha (Typhaceae). American Midland Naturalist 78: 257–287.CrossRefGoogle Scholar
  50. Smith, S. G., 1987. Typha: its taxonomy and the ecological significance of hybrids. Archiv fü Hydrobiologie 27: 129–138.Google Scholar
  51. Snow, A. A., S. E. Travis, R. Wildová, T. Fér, P. M. Sweeney, J. E. Marburger, S. Windels, B. Kubátová, D. E. Goldberg & E. Mutegi, 2010. Species-specific SSR alleles for studies of hybrid cattails (Typha latifolia × T. angustifolia; Typhaceae) in North America. American Journal of Botany 97: 2061–2067.CrossRefPubMedGoogle Scholar
  52. Sun, K. & D. Simpson, 2010. Typhaceae. In Wu, Z. Y. & P. H. Raven (eds), Flora of China. vol. 23. Science Press, Beijing: 158–163.Google Scholar
  53. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Terer, T., A. M. Muasya & L. Triest, 2015. Strong isolation by distance revealed among Cyperus papyrus populations in the Rift Valley lakes, Lake Victoria, and isolated wetlands of Kenya. Aquatic Botany 121: 57–66.CrossRefGoogle Scholar
  55. Travis, S. E., J. E. Marburger, S. Windels & B. Kubátová, 2010. Hybridization dynamics of invasive cattail (Typhaceae) stands in the Western Great Lakes Region of North America: a molecular analysis. Journal of Ecology 98: 7–16.CrossRefGoogle Scholar
  56. Tsyusko, O. V., M. H. Smith, R. R. Sharitz & T. C. Glenn, 2005. Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine. American Journal of Botany 92: 1161–1169.CrossRefPubMedGoogle Scholar
  57. Tsyusko-Omeltchenko, O. V., N. A. Schable, M. H. Smith & T. C. Glenn, 2003. Microsatellite loci isolated from narrow-leaved cattail Typha angustifolia. Molecular Ecology Notes 3: 535–538.CrossRefGoogle Scholar
  58. Xu, X. W., W. D. Ke, X. P. Yu, J. Wen & S. Ge, 2008. A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based on Adh1a sequences. Theoretical and Applied Genetics 116: 835–843.CrossRefPubMedGoogle Scholar
  59. Zhang, X. H., M. Tapia, J. B. Webb, Y. H. Huang & S. Miao, 2008. Molecular signatures of two cattail species, Typha domingensis and Typha latifolia (Typhaceae), in South Florida. Molecular Phylogenetics and Evolution 49: 368–376.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations