, Volume 770, Issue 1, pp 27–36 | Cite as

Sources contribution for benthic invertebrates: an inter-lake comparison in a flood plain system

  • M. Saigo
  • M. R. Marchese
  • K. M. Wantzen
Primary Research Paper


To explore temporal variation in trophic relationships of benthic invertebrates in the Middle Paraná River floodplain, we performed stable isotopes analysis (SIA) in two lakes with contrasting morphologies during both dry and flooding periods. Lake 1 is permanently connected, large and deep with a narrow aquatic–terrestrial transition zone (ATTZ), and Lake 2 is temporarily connected, small and shallow with a wide ATTZ. The source contribution analysis showed that macrophytes and sediment particulate organic matter are important basal resources. We found sharp temporal variations with regard to gatherer–collectors in Lake 2, being sediment particulate organic matter the most important source during dry period. However, during flooding, macrophytes and epiphyton increased their importance. Our results reveal temporal variations in trophic interactions, suggesting that hydrologic and morphologic characteristics of water bodies can be important factors determining food web structure. Besides, we provide evidence from floodplain lakes of the Middle Paraná River, which contradicts the general idea that algae is the main carbon source in floodplain rivers.


Benthic invertebrates Wetlands Stable isotopes Trophic relationships Neotropics 

Supplementary material

10750_2015_2565_MOESM1_ESM.jpg (873 kb)
Supplement Figure 1 Location of study lakes in the Middle Paraná River. The Aquatic Terrestrial Transition Zone (ATTZ) is represented with striped areas. Supplementary material 1 (JPEG 873 kb)


  1. Araujo-Lima, C. A. R. M., B. R. Forsberg, R. Victoria & L. Martinelli, 1986. Energy source for detritivorous fishes in the Amazonia. Science 234: 1256–1258.CrossRefPubMedGoogle Scholar
  2. Burress, E. D., M. M. Gangloff & L. Siefferman, 2013. Trophic analysis of two subtropical South American freshwater crabs using stable isotope ratios. Hydrobiología 702: 5–13.CrossRefGoogle Scholar
  3. Cazzaniga, N. J. & A. L. Estebenet, 1984. Revisión y notas sobre los hábitos alimentarios de los Ampullariidae (Gastropoda). Historia Natural 4: 213–224.Google Scholar
  4. Cogo, G. B. & S. Santos, 2013. The role of aeglids in shredding organic matter in Neotropical stream. Journal of Crustacean Biology 33: 519–526.CrossRefGoogle Scholar
  5. Cohen, J. E. & C. M. Newman, 1992. Community area and food-chain length: theoretical predictions. American Naturalist 138: 1542–1554.CrossRefGoogle Scholar
  6. Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in sounth Brazil. Studies on Neotropical Fauna and Environment 40: 71–90.CrossRefGoogle Scholar
  7. Delong, M. D. & J. H. Thorp, 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147: 76–85.CrossRefPubMedGoogle Scholar
  8. Delong, M. D., J. H. Thorp, K. S. Greenwood & M. C. Miller, 2001. Responses of consumers and food resources to a high magnitude, unpredicted flood in the Upper Mississippi River basin. Regulated rivers: Research & Management. 17: 217–234.CrossRefGoogle Scholar
  9. Estebenet, A. L., 1995. Food and feeding in Pomacea canaliculata (Gastropoda: Ampullaridae). The Velliger 38: 573–584.Google Scholar
  10. Fellerhoff, C., 2002. Feeding and growth of apple snail Pomacea lineata in the Pantanal wetland, Brazil-a stable isotope approach. Isotopes in Environtal and Health Studies 38: 227–243.CrossRefGoogle Scholar
  11. Forsberg, B. R., Lima C. Araujo, L. A. Martinelli, R. L. Victoria & J. A. Bonassi, 1993. Autotrophic carbon sources for fish of the central Amazon. Ecology 74: 643–652.CrossRefGoogle Scholar
  12. Galizzi, M. C., F. L. Zilli & M. Marchese, 2012. Diet and functional feeding groups of Chironomidae (Diptera) in the Middle Paraná River floodplain (Argentina). Iheringia, Série Zoologia 102: 117–121.CrossRefGoogle Scholar
  13. Hamilton, S. K., W. M. Lewis & S. J. Sippel, 1992. Energy sources for aquatic animals in the Orinoco River floodplain: evidence from stable isotopes. Oecologia 89: 324–330.CrossRefGoogle Scholar
  14. Hamilton, S. K., S. J. Sippel & S. E. Bunn, 2005. Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnology and Oceanography Methods 3: 149–157.CrossRefGoogle Scholar
  15. Herwig, B. R., D. H. Wahl, J. M. Dettmers & D. A. Soluk, 2007. Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences 64: 495–508.CrossRefGoogle Scholar
  16. Hoeinghaus, D. J., K. O. Winemiller & A. A. Agostinho, 2007. Landscape scale hydrologic characteristics differentiate patterns of carbon flow in large rivers food webs. Ecosystems 10: 1019–1033.CrossRefGoogle Scholar
  17. Hunt, R. J., T. D. Jardine, S. K. Hamilton & S. E. Bunn, 2011. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshwater Biology 57: 435–450.CrossRefGoogle Scholar
  18. Jepsen, D. B. & K. O. Winemiller, 2007. Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers. Ecology of Freshwater Fish 16: 267–281.CrossRefGoogle Scholar
  19. Junk, W. & K. M. Wantzen, 2004. Proceedings of the second international symposium on the management of large rivers for fisheries, vol 2. FAO, Phnom Penh.Google Scholar
  20. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Science 106: 110–127.Google Scholar
  21. Leigh, C., M. A. Buford, F. Sheldon & S. E. Bunn, 2010. Dynamic stability in dry season food web within tropical rivers. Marine and Freshwater Research 61: 357–368.CrossRefGoogle Scholar
  22. Lewis Jr, W. M., S. K. Hamilton, M. A. Rodríguez, J. F. Saunders & M. A. Lasi, 2001. Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data. Journal of the North American Benthological Society 20: 241–254.CrossRefGoogle Scholar
  23. Marchese, M. R., M. Saigo, F. L. Zilli, S. Capello, M. Devercelli, L. Montalto, G. Paporello & K. M. Wantzen, 2014. Food webs of the Paraná River floodplain: Assessing basal sources using stable carbon and nitrogen isotopes. Limnologica 46: 22–30.CrossRefGoogle Scholar
  24. Matthews, B. & A. Mazumder, 2005. Temporal variation in body composition (C:N) helps explain seasonal patterns of zooplankton d13C. Freshwater Biology 50: 502–515.CrossRefGoogle Scholar
  25. McConnaughey, T. & C. P. McRoy, 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Marine Biology 53: 257–262.CrossRefGoogle Scholar
  26. McCutchan Jr, J. H., W. M. Lewis Jr, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.CrossRefGoogle Scholar
  27. Medeiros, E. S. F. & A. H. Arthington, 2010. Alloctonous and autochtonous carbon sources for fish in floodplain lagoons of an Australian dryland river. Environmental Biology of Fishes 90: 1–17.CrossRefGoogle Scholar
  28. Merritt, R. W. & K. W. Cummins, 1996. An introduction to aquatic insects of North America. Kendall/Hunt Publishing, Dubuque.Google Scholar
  29. Mortillaro, J. M., M. Pouilly, M. Wach, C. E. C. Freitas, G. Abril & T. Meziane, 2015. Trophic opportunism of central Amazon floodplain fish. Freshwater Biology. doi: 10.1111/fwb.12598.Google Scholar
  30. Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world´s large rivers systems. Science 308: 405–408.CrossRefPubMedGoogle Scholar
  31. Oliveira, A. C. B., M. A. Martinelli, M. Z. Moreira, M. G. M. Soares & J. E. P. Cyrino, 2006. Seasonality of energy sources of Colossoma macropomum in a floodplain lake in the Amazon – lake Camalea˜o, Amazonas, Brazil. Fisheries Management and Ecology 13: 135–142.CrossRefGoogle Scholar
  32. Parnell, A., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS One 5: e9672.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systemetics 18: 293–320.CrossRefGoogle Scholar
  34. Pimm, S. L., 1982. Food Webs. Chapman & Hall, London.CrossRefGoogle Scholar
  35. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  36. Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. Montaña, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.CrossRefPubMedGoogle Scholar
  37. Reid, M. A., M. D. Delong & M. C. Thoms, 2011. The influence of hydrological connectivity on food web structure in floodplain lakes. River Research and Applications 28: 827–844.CrossRefGoogle Scholar
  38. Sabattini, R. A. & V. H. Lallana, 2007. Aquatic Macrophytes. In Iriondo, M., J. C. Paggi & J. E. Parma (eds), The Middle Paraná River: Limnology of Subtropical Wetland. Springer, Heidelberg: 205–226.CrossRefGoogle Scholar
  39. Sabo, J. L., J. C. Finlay & D. M. Post, 2009. Food chains in freshwaters. Annals of the New York Academy of Sciences 1162(1): 187–220.CrossRefPubMedGoogle Scholar
  40. Saigo, M., M. R. Marchese & L. Montalto, 2009. Hábitos alimentarios de hyalella curvispina shoemaker, 1942 (Amphipoda: Gammaridea) en ambientes leníticos de la llanura aluvial del río Paraná medio. Natura Neotropicalis 40: 43–59.Google Scholar
  41. Schmith, S. N., J. D. Olden, C. T. Solomon & M. J. Vander Zanden, 2007. Quantitative approaches to the analysis of stable isotope food web data. Ecology 88: 2793–2802.CrossRefGoogle Scholar
  42. Schneider, B., E. R. Cunha, M. Marchese & S. M. Thomaz, 2015. Explanatory variables associated with diversity and composition of aquatic macrophytes in a large subtropical river floodplain. Aquatic Botany 121: 67–75.CrossRefGoogle Scholar
  43. Smith, J. A., D. Mazumder, I. M. Suthers & M. D. Taylor, 2013. To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 4: 612–618.CrossRefGoogle Scholar
  44. Tockner, K. & J. A. Stanford, 2002. Riverine flood plains: present state and future trends. Environmental Conservation 29: 308–330.CrossRefGoogle Scholar
  45. Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ 15N enrichment: a meta-analysis. Oecologia 136: 169–182.CrossRefPubMedGoogle Scholar
  46. Wantzen, K. M., F. A. Machado, M. Voss, H. Boriss & W. J. Junk, 2002. Seasonal isotopic changes in fish of the Pantanal wetland, Brazil. Aquatic Sciences 64: 239–251.CrossRefGoogle Scholar
  47. Wantzen, K. M., C. Fellerhoff & M. Voss, 2011. Stable isotope ecology of the Pantanal. In Junk, W. J., C. J. da Silva, C. Nunes da Cunha & K. M. Wantzen (eds), The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland. Pensoft Publishers, Sofia: 599–618.Google Scholar
  48. Zeug, S. C. & K. O. Winemiller, 2008. Evidence supporting the importance of terrestrial carbon en large-river food web. Ecology 89: 1733–1743.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto Nacional de Limnología (CONICET-UNL)Ciudad UniversitariaSanta FeArgentina
  2. 2.Facultad de Humanidades y Ciencias (UNL)Ciudad UniversitariaSanta FeArgentina
  3. 3.UNESCO Chair ‘River Culture’, Interdisciplinary Research Center for Cities, Territories, Environment and Society (CNRS UMR CITERES)Université François RabelaisToursFrance

Personalised recommendations