, Volume 798, Issue 1, pp 141–149 | Cite as

Ecotoxicity of nanosized magnetite to crustacean Daphnia magna and duckweed Lemna minor

  • Irina Blinova
  • Liina Kanarbik
  • Natalja Irha
  • Anne Kahru


Along with the development of nanotechnology, an increase in production and application of nanosized magnetite (Fe3O4) is expected. Though magnetite is considered relatively safe, information concerning potential hazards of synthetic magnetite nanoparticles with unique physico-chemical characteristics to aquatic organisms is still limited. In this study, we evaluated the toxicity of nanosized (27.2 ± 9.8 nm) and bulk (144.2 ± 67.7 nm) magnetite particles to different life stages of the aquatic crustacean Daphnia magna. In addition, phytotoxicity of the magnetite was evaluated using duckweed Lemna minor. The study did not reveal any statistically significant differences between the biological effects of nanosized and bulk magnetite particles. Both forms of magnetite induced very low toxicity (EC50 > 100 ppm) to D. magna and L. minor in the standard acute assays. However, it was demonstrated that at acutely subtoxic magnetite concentrations (10 and 100 ppm), the number of neonates hatched from D. magna ephippia was decreased. Moreover, short-term (48 h) exposure of neonate daphnids to these concentrations may significantly affect the long-term survival and reproductive potential of daphnids. These results indicate that substantial contamination of aquatic ecosystems by magnetite may disrupt the stability of cladoceran populations.


Fe3O4 Iron oxide nanoparticles Ecotoxicity Daphnia magna Lemna minor Pollution 



This research was supported by the European Regional Development Fund project TERIKVANT, Estonian Targeted Funding project IUT23-5, Estonian Science Foundation project ETF9347. The authors are grateful to Meeri Visnapuu for providing the TEM images of iron oxide particles and to editor A. Petrusek, anonymous reviewers, M. Heinlaan and V. Aruoja for comments and text correction.

Supplementary material

10750_2015_2540_MOESM1_ESM.pdf (281 kb)
Supplementary material 1 (PDF 280 kb)


  1. Baalousha, M., 2009. Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Science of the Total Environment 407: 2093–2101.CrossRefPubMedGoogle Scholar
  2. Barhoumi, L. & D. Dewez, 2013.Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed Research International. ID 647974.Google Scholar
  3. Barhoumi, L., A. Oukarroum, L. B. Taher, L. S. Smiri, H. Abdelmelek & D. Dewez, 2015. Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba. Archives of Environmental Contamination and Toxicology 68: 510–520.CrossRefPubMedGoogle Scholar
  4. Baumann, J., J. Köser, D. Arndt & J. Filser, 2014. The coating makes the difference: acute effects of iron oxide nanoparticles on Daphnia magna. Science of the Total Environment 484: 176–184.CrossRefPubMedGoogle Scholar
  5. Blaney, L., 2007. Magnetite (Fe3O4): properties, synthesis, and applications. Lehigh Preserve 15: Paper 5 [available on internet].
  6. Blinova, I., A. Ivask, M. Heinlaan, M. Mortimer & A. Kahru, 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution 158: 41–47.CrossRefPubMedGoogle Scholar
  7. Chen, P.-J., S.-W. Tan & W.-L. Wu, 2012a. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Environmental Science & Technology 46: 8431–8439.CrossRefGoogle Scholar
  8. Chen, X., X. Zhu, R. Li, H. Yao, Z. Lu & X. Yang, 2012b. Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on Chlorella vulgaris in aquatic environment. Open Journal of Ecology 2: 21–28.CrossRefGoogle Scholar
  9. Crane, M., A. Grosso & C. Janssen, 2000. Statistical techniques for the ecological risk assessment of chemicals in freshwaters. In Sparks, T. (ed.), Statistics in Ecotoxicology. Wiley, New York: 247–278.Google Scholar
  10. Fjällborg, B., B. Li, E. Nilsson & G. Dave, 2006. Toxicity identification evaluation of five metals performed with two organisms (Daphnia magna and Lactuca sativa). Archives of Environmental Contamination and Toxicology 50: 196–204.CrossRefPubMedGoogle Scholar
  11. García, A., R. Espinosa, L. Delgado, E. Casals, E. González, V. Puntes, C. Barata, X. Font & A. Sánchez, 2011. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269: 136–141.CrossRefGoogle Scholar
  12. Giraldo, L. & J. C. Moreno-Piraján, 2013. Synthesis of magnetite nanoparticles and exploring their application in the removal of Pt2+ and Au3+ ions from aqueous solutions. European Chemical Bulletin 2: 445–452.Google Scholar
  13. Habuda-Stanić, M. & M. Nujić, 2015. Arsenic removal by nanoparticles: a review. Environmental Science and Pollution Research 22: 8094–8123.CrossRefPubMedGoogle Scholar
  14. Heinlaan, M., A. Ivask, I. Blinova, H.-C. Dubourguier & A. Kahru, 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71: 1308–1316.CrossRefPubMedGoogle Scholar
  15. Hu, J., D. Wang, B. E. Forthaus & J. Wang, 2012. Quantifying the effect of nanoparticles on As(V) ecotoxicity exemplified by nano-Fe2O3 (magnetic) and nano-Al2O3. Environmental Toxicology and Chemistry 31(12): 2870–2876.CrossRefPubMedGoogle Scholar
  16. Kahru, A. & H.-C. Dubourguier, 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269: 105–119.CrossRefPubMedGoogle Scholar
  17. Kahru, A. & A. Ivask, 2013. Mapping the dawn of nanoecotoxicological research. Accounts of Chemical Research 46: 823–833.CrossRefPubMedGoogle Scholar
  18. Karlsson, H. L., M. S. Toprak & B. Fadeel, 2015. Toxicity of metal and metal oxide nanoparticles. In Nordberg, G. F., B. A. Fowler & M. Nordberg (eds), Handbook on the Toxicology of Metals. Academic Press, New York: 75–112.CrossRefGoogle Scholar
  19. Karn, B., T. Kuiken & M. Otto, 2009. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental Health Perspectives 117: 1813–1831.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Klaine, S. J., P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin & J. R. Lead, 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27: 1825–1851.CrossRefPubMedGoogle Scholar
  21. Käkinen, A., O. Bondarenko, A. Ivask & A. Kahru, 2011. The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors 11(11): 10502–10521.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mohan, D. & C. U. Pittman, 2007. Arsenic removal from water/wastewater using adsorbents-A critical review. Journal of Hazardous Materials 142: 1–53.CrossRefPubMedGoogle Scholar
  23. Myllynen, K., E. Ojutkangas & M. Nikinmaa, 1997. River water with high iron concentration and low pH causes mortality of lamprey roe and newly hatched larvae. Ecotoxicology and Environmental Safety 36: 43–48.CrossRefPubMedGoogle Scholar
  24. Nations, S., M. Wages, J. E. Cañas, J. Maul, C. Theodorakis & G. P. Cobb, 2011. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83: 1053–1061.CrossRefPubMedGoogle Scholar
  25. Ngomsik, A. F., A. Bee, M. Draye, G. Cote & V. Cabuil, 2005. Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie 8: 963–970.CrossRefGoogle Scholar
  26. Nowack, B. & T. D. Bucheli, 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution 150: 5–22.CrossRefPubMedGoogle Scholar
  27. Nowack, B., J. F. Ranville, S. Diamond, J. A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A. A. Koelmans & S. J. Klaine, 2012. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry 31: 50–59.CrossRefPubMedGoogle Scholar
  28. OECD, 2004. OECD Guideline for Testing of Chemicals: Daphnia sp. Acute Immobilisation Test (202). OECD, Paris.CrossRefGoogle Scholar
  29. OECD, 2006. OECD Guideline for Testing of Chemicals: Lemna sp. Growth Inhibition Test (221). OECD, Paris.CrossRefGoogle Scholar
  30. Rusevova, K., F. Kopinke & A. Georgi, 2012. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions – Influence of Fe(II)/Fe(III) ratio on catalytic performance. Journal of Hazardous Materials 241–242: 433–440.CrossRefPubMedGoogle Scholar
  31. Shannon, M. A., P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas & A. M. Mayes, 2008. Science and technology for water purification in the coming decades. Nature 452: 301–310.CrossRefPubMedGoogle Scholar
  32. Singh, N., G. J. Jenkins, R. Asadi & S. H. Doak, 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews. doi: 10.3402/nano.v1i0.5358.PubMedPubMedCentralGoogle Scholar
  33. Vikesland, P. J., A. M. Heathcock, R. L. Rebodos & K. E. Makus, 2007. Particle size and aggregation effects on magnetite reactivity toward carbon tetrachloride. Environmental Science and Technology 41: 5277–5283.CrossRefPubMedGoogle Scholar
  34. Vuori, K.-M., 1995. Direct and indirect effects of iron on river ecosystems. Annales Zoologici Fennici 32: 317–329.Google Scholar
  35. Vuorinen, P. J., M. Keinänen, S. Peuranen & C. Tigerstedt, 1998. Effects of iron, aluminium, dissolved humic material and acidity of grayling in laboratory exposures, and a comparison of sensitivity with brown trout. Boreal Environment Research 3: 405–419.Google Scholar
  36. Yean, S., L. Cong, C. T. Yavuz, J. T. Mayo, W. W. Yu, A. T. Kan, V. L. Colvin & M. B. Tomson, 2005. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research 20: 3255–3264.CrossRefGoogle Scholar
  37. Zelmanov, G. & R. Semiat, 2008. Iron (3) oxide-based nanoparticles as catalyst in advanced organic aqueous oxidation. Water Research 42: 492–498.CrossRefPubMedGoogle Scholar
  38. Zhu, X., S. Tian & Z. Cai, 2012. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One. doi: 10.1371/journal.pone.0046286.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Irina Blinova
    • 1
  • Liina Kanarbik
    • 1
    • 2
  • Natalja Irha
    • 1
  • Anne Kahru
    • 1
  1. 1.Laboratory of Environmental ToxicologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
  2. 2.Department of Chemical and Materials TechnologyTallinn University of TechnologyTallinnEstonia

Personalised recommendations