Skip to main content
Log in

Ecotoxicity of nanosized magnetite to crustacean Daphnia magna and duckweed Lemna minor

  • CLADOCERA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Along with the development of nanotechnology, an increase in production and application of nanosized magnetite (Fe3O4) is expected. Though magnetite is considered relatively safe, information concerning potential hazards of synthetic magnetite nanoparticles with unique physico-chemical characteristics to aquatic organisms is still limited. In this study, we evaluated the toxicity of nanosized (27.2 ± 9.8 nm) and bulk (144.2 ± 67.7 nm) magnetite particles to different life stages of the aquatic crustacean Daphnia magna. In addition, phytotoxicity of the magnetite was evaluated using duckweed Lemna minor. The study did not reveal any statistically significant differences between the biological effects of nanosized and bulk magnetite particles. Both forms of magnetite induced very low toxicity (EC50 > 100 ppm) to D. magna and L. minor in the standard acute assays. However, it was demonstrated that at acutely subtoxic magnetite concentrations (10 and 100 ppm), the number of neonates hatched from D. magna ephippia was decreased. Moreover, short-term (48 h) exposure of neonate daphnids to these concentrations may significantly affect the long-term survival and reproductive potential of daphnids. These results indicate that substantial contamination of aquatic ecosystems by magnetite may disrupt the stability of cladoceran populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baalousha, M., 2009. Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Science of the Total Environment 407: 2093–2101.

    Article  CAS  PubMed  Google Scholar 

  • Barhoumi, L. & D. Dewez, 2013.Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed Research International. ID 647974.

  • Barhoumi, L., A. Oukarroum, L. B. Taher, L. S. Smiri, H. Abdelmelek & D. Dewez, 2015. Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba. Archives of Environmental Contamination and Toxicology 68: 510–520.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, J., J. Köser, D. Arndt & J. Filser, 2014. The coating makes the difference: acute effects of iron oxide nanoparticles on Daphnia magna. Science of the Total Environment 484: 176–184.

    Article  CAS  PubMed  Google Scholar 

  • Blaney, L., 2007. Magnetite (Fe3O4): properties, synthesis, and applications. Lehigh Preserve 15: Paper 5 [available on internet http://preserve.lehigh.edu/cas-lehighreview-vol-15/5].

  • Blinova, I., A. Ivask, M. Heinlaan, M. Mortimer & A. Kahru, 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution 158: 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P.-J., S.-W. Tan & W.-L. Wu, 2012a. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Environmental Science & Technology 46: 8431–8439.

    Article  CAS  Google Scholar 

  • Chen, X., X. Zhu, R. Li, H. Yao, Z. Lu & X. Yang, 2012b. Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on Chlorella vulgaris in aquatic environment. Open Journal of Ecology 2: 21–28.

    Article  CAS  Google Scholar 

  • Crane, M., A. Grosso & C. Janssen, 2000. Statistical techniques for the ecological risk assessment of chemicals in freshwaters. In Sparks, T. (ed.), Statistics in Ecotoxicology. Wiley, New York: 247–278.

    Google Scholar 

  • Fjällborg, B., B. Li, E. Nilsson & G. Dave, 2006. Toxicity identification evaluation of five metals performed with two organisms (Daphnia magna and Lactuca sativa). Archives of Environmental Contamination and Toxicology 50: 196–204.

    Article  PubMed  Google Scholar 

  • García, A., R. Espinosa, L. Delgado, E. Casals, E. González, V. Puntes, C. Barata, X. Font & A. Sánchez, 2011. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269: 136–141.

    Article  Google Scholar 

  • Giraldo, L. & J. C. Moreno-Piraján, 2013. Synthesis of magnetite nanoparticles and exploring their application in the removal of Pt2+ and Au3+ ions from aqueous solutions. European Chemical Bulletin 2: 445–452.

    CAS  Google Scholar 

  • Habuda-Stanić, M. & M. Nujić, 2015. Arsenic removal by nanoparticles: a review. Environmental Science and Pollution Research 22: 8094–8123.

    Article  PubMed  Google Scholar 

  • Heinlaan, M., A. Ivask, I. Blinova, H.-C. Dubourguier & A. Kahru, 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71: 1308–1316.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., D. Wang, B. E. Forthaus & J. Wang, 2012. Quantifying the effect of nanoparticles on As(V) ecotoxicity exemplified by nano-Fe2O3 (magnetic) and nano-Al2O3. Environmental Toxicology and Chemistry 31(12): 2870–2876.

    Article  CAS  PubMed  Google Scholar 

  • Kahru, A. & H.-C. Dubourguier, 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269: 105–119.

    Article  CAS  PubMed  Google Scholar 

  • Kahru, A. & A. Ivask, 2013. Mapping the dawn of nanoecotoxicological research. Accounts of Chemical Research 46: 823–833.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, H. L., M. S. Toprak & B. Fadeel, 2015. Toxicity of metal and metal oxide nanoparticles. In Nordberg, G. F., B. A. Fowler & M. Nordberg (eds), Handbook on the Toxicology of Metals. Academic Press, New York: 75–112.

    Chapter  Google Scholar 

  • Karn, B., T. Kuiken & M. Otto, 2009. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental Health Perspectives 117: 1813–1831.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klaine, S. J., P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin & J. R. Lead, 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27: 1825–1851.

    Article  CAS  PubMed  Google Scholar 

  • Käkinen, A., O. Bondarenko, A. Ivask & A. Kahru, 2011. The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors 11(11): 10502–10521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohan, D. & C. U. Pittman, 2007. Arsenic removal from water/wastewater using adsorbents-A critical review. Journal of Hazardous Materials 142: 1–53.

    Article  CAS  PubMed  Google Scholar 

  • Myllynen, K., E. Ojutkangas & M. Nikinmaa, 1997. River water with high iron concentration and low pH causes mortality of lamprey roe and newly hatched larvae. Ecotoxicology and Environmental Safety 36: 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Nations, S., M. Wages, J. E. Cañas, J. Maul, C. Theodorakis & G. P. Cobb, 2011. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83: 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  • Ngomsik, A. F., A. Bee, M. Draye, G. Cote & V. Cabuil, 2005. Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie 8: 963–970.

    Article  CAS  Google Scholar 

  • Nowack, B. & T. D. Bucheli, 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution 150: 5–22.

    Article  CAS  PubMed  Google Scholar 

  • Nowack, B., J. F. Ranville, S. Diamond, J. A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A. A. Koelmans & S. J. Klaine, 2012. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry 31: 50–59.

    Article  CAS  PubMed  Google Scholar 

  • OECD, 2004. OECD Guideline for Testing of Chemicals: Daphnia sp. Acute Immobilisation Test (202). OECD, Paris.

    Book  Google Scholar 

  • OECD, 2006. OECD Guideline for Testing of Chemicals: Lemna sp. Growth Inhibition Test (221). OECD, Paris.

    Book  Google Scholar 

  • Rusevova, K., F. Kopinke & A. Georgi, 2012. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions – Influence of Fe(II)/Fe(III) ratio on catalytic performance. Journal of Hazardous Materials 241–242: 433–440.

    Article  PubMed  Google Scholar 

  • Shannon, M. A., P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas & A. M. Mayes, 2008. Science and technology for water purification in the coming decades. Nature 452: 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Singh, N., G. J. Jenkins, R. Asadi & S. H. Doak, 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews. doi:10.3402/nano.v1i0.5358.

    PubMed  PubMed Central  Google Scholar 

  • Vikesland, P. J., A. M. Heathcock, R. L. Rebodos & K. E. Makus, 2007. Particle size and aggregation effects on magnetite reactivity toward carbon tetrachloride. Environmental Science and Technology 41: 5277–5283.

    Article  CAS  PubMed  Google Scholar 

  • Vuori, K.-M., 1995. Direct and indirect effects of iron on river ecosystems. Annales Zoologici Fennici 32: 317–329.

    Google Scholar 

  • Vuorinen, P. J., M. Keinänen, S. Peuranen & C. Tigerstedt, 1998. Effects of iron, aluminium, dissolved humic material and acidity of grayling in laboratory exposures, and a comparison of sensitivity with brown trout. Boreal Environment Research 3: 405–419.

    CAS  Google Scholar 

  • Yean, S., L. Cong, C. T. Yavuz, J. T. Mayo, W. W. Yu, A. T. Kan, V. L. Colvin & M. B. Tomson, 2005. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research 20: 3255–3264.

    Article  CAS  Google Scholar 

  • Zelmanov, G. & R. Semiat, 2008. Iron (3) oxide-based nanoparticles as catalyst in advanced organic aqueous oxidation. Water Research 42: 492–498.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., S. Tian & Z. Cai, 2012. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One. doi:10.1371/journal.pone.0046286.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the European Regional Development Fund project TERIKVANT, Estonian Targeted Funding project IUT23-5, Estonian Science Foundation project ETF9347. The authors are grateful to Meeri Visnapuu for providing the TEM images of iron oxide particles and to editor A. Petrusek, anonymous reviewers, M. Heinlaan and V. Aruoja for comments and text correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Blinova.

Additional information

Guest editors: Adam Petrusek & Piet Spaak / Proceedings of the 10th International Symposium on Cladocera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blinova, I., Kanarbik, L., Irha, N. et al. Ecotoxicity of nanosized magnetite to crustacean Daphnia magna and duckweed Lemna minor . Hydrobiologia 798, 141–149 (2017). https://doi.org/10.1007/s10750-015-2540-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2540-6

Keywords

Navigation