, Volume 767, Issue 1, pp 249–265 | Cite as

Endogenous origin of foams in lakes: a long-term analysis for Lake Maggiore (northern Italy)

  • F. Stefani
  • F. Salerno
  • D. Copetti
  • D. Rabuffetti
  • L. Guidetti
  • G. Torri
  • A. Naggi
  • M. Iacomini
  • G. Morabito
  • L. Guzzella
Primary Research Paper


The formation of foams on lakes is a complex phenomenon whose origin is often hardly identifiable. Recently (2007, 2008, and 2010) foam episodes started to occur in Lake Maggiore, northern Italy. The present work aimed to verify the hypothesis of an endogenous-natural origin of these foams, driven by trophic or climatic changes. To this purpose, a long-term (2000–2013) analysis of phytoplankton biovolumes, meteorological, and hydrological data has been performed together with the chemical characterization of foams. Foams resulted of endogenous origin and likely related to phytoplankton biomass degradation. Data analysis highlighted atypical warm temperature and residual lake stratification in winter in two of the three years of foam events, coupled with exceptional Bacyllariophyceae blooms in spring. Tabellaria flocculosa mostly contributed in terms of biomass in 2007 and 2008, but not in 2010; thus overall algal biomass seemed a better predictor of the risk of foam formation. Foam events occurred from July to December, driven by atypically windy conditions, and congruently with the time needed to degrade biomass into surface-active compounds. A co-occurrence of different factors resulted essential to generate foams, and climate changes likely contribute to enhance their occurrence in Lake Maggiore.


Foam Lake Maggiore Phytoplankton Climate change 



This work was carried out within the Research B, activity 2.1.3 “Effetti ecologici delle fluttuazioni di livello del Lago Maggiore” of the Italy-Switzerland INTERREG “STRAtegie Di Adattamento ai cambiamenti climatici per la gestione dei rischi naturali (STRADA)” project, P.O. Cooperazione Transfrontaliera Italia–Svizzera 2007–2013.

Supplementary material

10750_2015_2506_MOESM1_ESM.pdf (1003 kb)
Supplementary material 1 (PDF 1002 kb)
10750_2015_2506_MOESM2_ESM.pdf (193 kb)
Supplementary material 2 (PDF 192 kb)
10750_2015_2506_MOESM3_ESM.pdf (211 kb)
Supplementary material 3 (PDF 210 kb)
10750_2015_2506_MOESM4_ESM.pdf (132 kb)
Supplementary material 4 (PDF 132 kb)
10750_2015_2506_MOESM5_ESM.pdf (1.2 mb)
Supplementary material 5 (PDF 1273 kb)


  1. Ambrosetti, W., L. Barbanti & A. Rolla, 2006. The climate of Lake Maggiore during the last fifty years. Journal of Limnology 65: 1–62.CrossRefGoogle Scholar
  2. APAT-CNR-IRSA, 2003. Metodo per tensioattivi anionici. 5170, In: APAT-CNR-IRSA, Metodi analitici per le acque,n. 29/2003: 827–831.Google Scholar
  3. ASTM, 1976. Standards Annual Book, Part 31, “Water”, Standard D 2330e68, Method A: 494 pp.Google Scholar
  4. Baldi, E., 1949. La situation actuelle de la recherche limnologique après le Congrès de Zurich. Revue suisse Hydrologie 11: 637–649.Google Scholar
  5. Bertoni, R. & C. Callieri, 2014. Cambiamenti climatici e fioriture di cianobatteri tossici: anche I laghi oligotrofi sono potenziali vittime. Nimbus 72: 168–170.Google Scholar
  6. Boschker, H. T. S., E. M. J. Dekkers, R. Pel & T. E. Cappenberg, 1995. Sources of organic-carbon in the litthoral of Lake Gloomier as indicated by stable carbon-isotope and carbohydrate compositions. Biogeochemistry 29: 89–105.CrossRefGoogle Scholar
  7. Breton, E., V. Rousseau, J. Y. Parent, J. Ozer & C. Lancelot, 2006. Hydroclimatic modulation of diatom/Phaeocystis blooms in nutrient-enriched Belgian coastal waters (North Sea). Limnology and Oceanography 51: 1401–1409.CrossRefGoogle Scholar
  8. Bowmer, K. H., A. Padovan, R. L. Oliver, W. Korth & G. G. Ganf, 1992. Physiology of geosmin production by Anabaena circinalis isolated from the Murrumbidgee River, Australia. Water Science and Technology 25: 259–267.Google Scholar
  9. Carvalho, L., C. McDonald, C. de Hoyos, U. Mischke, G. Phillips, G. Borics, S. Poikane, B. Skjelbred, A. L. Solheim, J. Van Wichelen & A. C. Cardoso, 2013. Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control. Journal of Applied Ecology 50: 315–323.CrossRefGoogle Scholar
  10. Chorus, I. & J. Bartram, 1999. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Published on behalf of WHO by E&FN Spon, London.CrossRefGoogle Scholar
  11. C.N.R.-I.S.E. Sezione di Idrobiologia ed Ecologia delle Acque Interne, 2003. Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma quinquennale 1998–2002. Campagna 2002. Commissione Internazionale per la protezione delle acque italo-svizzere.Google Scholar
  12. C.N.R.-I.S.E. Sede di Verbania, 2008. Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma quinquennale 2003–2007. Campagna 2007 e Rapporto quinquennale 2003–2007. Commissione Internazionale per la protezione delle acque italosvizzere.Google Scholar
  13. C.N.R.-I.S.E. Sede di Verbania, 2013. Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma quinquennale 2008–2012. Campagna 2012 e rapporto quinquennale. Commissione Internazionale per la protezione delle acque italo-svizzere.Google Scholar
  14. C.N.R.-I.S.E. Sede di Verbania, 2014. Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma triennale 2013–2015. Campagna 2013. Commissione Internazionale per la protezione delle acque italo-svizzere.Google Scholar
  15. Craig, D., R. J. Ireland & F. Barlocher, 1989. Seasonal variation in the organic composition of seafoam. Journal of Experimental Marine Biology and Ecology 130: 71–80.CrossRefGoogle Scholar
  16. de Bernardi, R., G. Giussani, M. Manca & D. Ruggiu, 1988. Long-term dynamics of plankton communities in Lago Maggiore (N. Italy). Verhandlungen internationale Vereinigung Limnologie 23: 729–733.Google Scholar
  17. Dokulil, M. & K. Teubner, 2011. Eutrophication and Climate Change: Present Situation and Future Scenarios. In Ansari, A. A., S. Singh Gill, G. R. Lanza & W. Rast (eds), Eutrophication: Czauses, Consequences and Control. Springer, Dodretch: 1–16.Google Scholar
  18. Gorin, P. A. J. & M. Mazurek, 1975. Further studies on the assignment of signals in 13C magnetic resonance spectra of aldoses and derived methyl glycosides. Canadian Journal of Chemistry 53: 1212–1223.CrossRefGoogle Scholar
  19. Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia 103: 103–106.CrossRefGoogle Scholar
  20. Guilizzoni, P., G. Galanti & H. Muntau, 1989. The aquatic macrophytes of Lake Maggiore: species composition, spatial distribution and heavy metal concentrations in tissue. Memorie Istituto Italiano di Idrobiologia 46: 235–260.Google Scholar
  21. Guzman, H. M., J. Cortes, P. W. Glynn & R. H. Richmond, 1990. Coral mortality associated with dinoflagellate blooms in the eastern Pacific (Costa-Rica and Panama). Marine Ecology Progress Series 60: 299–303.CrossRefGoogle Scholar
  22. Hessen, D. O. & S. Kaartvedt, 2014. Top-down cascades in lakes and oceans: different perspectives but same story? Journal of Plankton Research 36: 914–924.CrossRefGoogle Scholar
  23. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollinger & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  24. Jessup, D. A., M. A. Miller, J. P. Ryan, H. M. Nevins, H. A. Kerkering, A. Mekebri, D. B. Crane, T. A. Johnson & R. M. Kudela, 2009. Mass stranding of marine birds caused by a surfactant-producing red tide. Plos One 4: e4550.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Jewell, W. J. & P. L. Mc Carty, 1971. Aerobic decomposition of algae. Environmental Science and Technology 5: 1023–1031.CrossRefGoogle Scholar
  26. Langmuir, I., 1938. Surface motion of water induced by wind. Science 87: 119–123.CrossRefPubMedGoogle Scholar
  27. Lu, K. H., C. H. Jin, S. L. Dong, B. H. Gu & S. H. Bowen, 2006. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hydrobiologia 568: 111–120.CrossRefGoogle Scholar
  28. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  29. Manca, M. & R. Bertoni, 2014. Seventy five years of limnology at the Istituto Italiano di Idrobiologia in Pallanza. Journal of Limnology 73: 5–19.Google Scholar
  30. Manca, M., A. Calderoni & R. Mosello, 1992. Limnological research in Lago Maggiore: studies on hydrochemistry and plankton. Memorie Istituto italiano Idrobiologia 50: 171–200.Google Scholar
  31. Mosello, R. & D. Ruggiu, 1985. Nutrient load, trophic conditions and restoration prospects of Lake Maggiore. Internationale Revue der gesamten Hydrobiologie 70: 63–75.CrossRefGoogle Scholar
  32. Morabito, G., 2014. Fluttuazioni ultraventennali dei parametri meteo-climatici nel bacino del Lago Maggiore e risposta del fitoplancton. Nimbus 72: 171–173.Google Scholar
  33. Morabito, G. & A. Pugnetti, 2000. Primary productivity and related variables in the course of the trophic evolution of Lake Maggiore. Verhandlungen internationale Vereinigung der Limnologie 27: 2934–2937.Google Scholar
  34. Morabito, G., A. Oggioni & P. Panzani, 2003. Phytoplankton assemblage at equilibrium in large and deep subalpine lakes: a case study from Lago Maggiore (N. Italy). Hydrobiologia 502: 37–48.CrossRefGoogle Scholar
  35. Morabito, G., A. Oggioni & M. Austoni, 2012. Resource ratio and human impact: how diatom assemblages in Lake Maggiore responded to oligotrophication and climatic variability. Hydrobiologia 698: 47–60.CrossRefGoogle Scholar
  36. Napolitano, G. E. & J. E. Richmond, 1995. Enrichment of biogenic lipids, hydrocarbons and PCBs in stream-surface foams. Environmental Toxicology and Chemistry 14: 197–201.CrossRefGoogle Scholar
  37. O’Connell, A. W., 1986. Titration of nonionic surfactants with potassium tetrakis(4-chlorophenyl)borate. Analytical Chemistry 58: 669–670.CrossRefGoogle Scholar
  38. Ravera, O. & R. A. Vollenweider, 1968. Oscillatoria rubescens D.C. as an indicator of Lago Maggiore eutrophication. Schweizerische Zeitschrift Hydrologie 30: 374–380.Google Scholar
  39. Reynolds, C., 2006. The Ecology of Phytoplankton. Cambridge University Press, New York.CrossRefGoogle Scholar
  40. Rezanka, T. & K. Sigler, 2007. Structural analysis of a polysaccharide from Chlorella kessleri by means of gas chromatography-mass spectrometry of its saccharide alditols. Folia Microbiologica 52: 246–252.CrossRefPubMedGoogle Scholar
  41. Ruggiu, D., G. Morabito, P. Panzani & A. Pugnetti, 1998. Trends and relations among basic phytoplankton characteristics in the course of the long-term oligotrophication of Lake Maggiore (Italy). Hydrobiologia 370: 243–257.CrossRefGoogle Scholar
  42. Salmaso, N. & R. Mosello, 2010. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Advances in Oceanography and Limnology 1: 29–66.CrossRefGoogle Scholar
  43. Schilling, K. & M. Zessner, 2011. Foam in the aquatic environment. Water Research 45: 4355–4366.CrossRefPubMedGoogle Scholar
  44. Schindler, D. W., 2001. The Cumulative Effects of Climate Warming and Other Human Stresses on Canadian Freshwaters in the New Millennium. In Bendell-Young, L. & P. Gallaugher (eds), Waters in Peril. Springer, New York: 165–186.CrossRefGoogle Scholar
  45. Striquer Soares, F. & L. Chevolot, 1996. Particulate and dissolved carbohydrates and proteins in Lobo Reservoir (Sao Paulo State, Brazil): relationships with phytoplankton. Journal of Plankton Research 18: 521–537.CrossRefGoogle Scholar
  46. Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25(11): 1331–1346.CrossRefGoogle Scholar
  47. Wegner, C. & M. Hamburger, 2002. Occurrence of stable foam in the upper Rhine River caused by plant-derived surfactants. Environmental Science & Technology 36: 3250–3256.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • F. Stefani
    • 1
  • F. Salerno
    • 1
  • D. Copetti
    • 1
  • D. Rabuffetti
    • 2
  • L. Guidetti
    • 2
  • G. Torri
    • 3
  • A. Naggi
    • 3
  • M. Iacomini
    • 4
  • G. Morabito
    • 5
  • L. Guzzella
    • 1
  1. 1.Water Research Institute – National Research Council (IRSA-CNR)BrugherioItaly
  2. 2.Dipartimento VCOARPA PiemonteOmegnaItaly
  3. 3.Istituto di Ricerche Chimiche e Biochimiche G. RonzoniMilanItaly
  4. 4.Departamento de Bioquimica e Biologia MolecularUniversidade Federal do ParanàCuritibaBrazil
  5. 5.CNR, Istituto per lo Studio degli EcosistemiVerbania-PallanzaItaly

Personalised recommendations