Advertisement

Hydrobiologia

, Volume 767, Issue 1, pp 81–93 | Cite as

Spatial scale effects on Chironomidae diversity and distribution in a Mediterranean River Basin

  • Ioannis Karaouzas
  • Mateusz Płóciennik
Primary Research Paper

Abstract

Chironomidae are a very common insect group in running waters of Greece; however, they have been rarely studied. The aim of this work was to investigate Chironomidae distribution and abundance in a Mediterranean intermittent river basin, identify the environmental factors that are linked to variation in their assemblages and to partition the influence of environmental and spatial components, alone and in combination, on Chironomidae community composition. Multivariate ordination techniques were used to assess the association between environmental variables and species abundance, while variation partitioning was performed using partial canonical correspondence analysis to understand the importance of different explanatory variables in Chironomidae variation. Chironomidae variation was divided into independent and joint effects of micro-scale (physical and chemical variables, microhabitat composition, etc.), meso-scale (land use/cover) and macro-scale (altitude and distance to source, etc.) variables. Stream width and depth, water discharge, land uses, pH, and ecological quality were the most important factors structuring Chironomidae assemblages. Micro-scale variables accounted for 55.6% of the total explained variation followed by meso-scale (10.7%) and macro-scale (10.4%) variables. The results of partial constraint analyses suggest that micro-scale variables play a major role in Chironomidae assemblages.

Keywords

Assemblages Variation partitioning Midges Species distribution Greece 

Notes

Acknowledgments

The data of this work were collected within the framework of the LIFE—Environment project “Environmental Friendly Technologies for Rural Development”, LIFE05ENV/GR/000245. The authors would like to thank the two anonymous reviewers for the valuable comments towards the improvement of this manuscript.

Supplementary material

10750_2015_2479_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. AQEM Consortium, 2002. Manual for the application of the AQEM method. A comprehensive method to assess European streams using macroinvertebrates, developed for the purpose of Water Framework Directive. Version 1.0.Google Scholar
  2. Ashe P., J. P. O’Connor, 2009. A World Catalogue of Chironomidae (Diptera). Part 1. Buchonomyiinae, Chilenomyiinae, Podonominae, Aphroteniinae, Tanypodinae, Usambaromyiinae, Diamesinae, Prodiamesinae and Telmatogetoninae. Irish Biogeographical Society & National Museum of Ireland, Dublin. pp 445.Google Scholar
  3. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  4. Bonada, N., M. Rieradevall & N. Prat, 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.CrossRefGoogle Scholar
  5. Bonada, N., M. Rieradevall, H. Dallas, J. Davis, J. Day, R. Figueroa, V. H. Resh & N. Prat, 2008. Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers. Freshwater Biology 53: 772–788.CrossRefGoogle Scholar
  6. Brooks S. J., P. G. Langdon, O. Heiri, 2007. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London. pp 276.Google Scholar
  7. Chapman, M. G. & A. J. Underwood, 1999. Ecological patterns in multivariate assemblages: information and interpretation of negative values in anosim tests. Marine Ecological Progress Series 180: 257–265.CrossRefGoogle Scholar
  8. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  9. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth: 192.Google Scholar
  10. Clarke, K. R. & R. M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth: 172.Google Scholar
  11. European Commission, 2005. WFD CIS Guidance Document 13. WFD CIS Guidance Document No. 13. Overall Approach to the Classification of Ecological Status and Ecological Potential, 53 p.Google Scholar
  12. Ferrington, L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 447–455.CrossRefGoogle Scholar
  13. Gallart, F., N. Prat, E. M. García-Roger, J. Latron, M. Rieradevall, P. Llorens, G. G. Barberá, D. Brito, A. M. De Girolamo, A. Lo Porto, A. Buffagni, S. Erba, R. Neves, N. P. Nikolaidis, J. L. Perrin, E. P. Querner, J. M. Quiñonero, M. G. Tournoud, O. Tzoraki, N. Skoulikidis, R. Gómez, M. Sánchez-Montoya & J. Froebrich, 2012. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota. Hydrology and Earth System Sciences 16: 3165–3182.CrossRefGoogle Scholar
  14. García-Roger, E. M., M. del Mar Sańchez-Montoya, R. Gómez, M. L. Suárez, M. R. Vidal-Abarca, J. Latron, M. Rieradevall & N. Prat, 2011. Do seasonal changes in habitat features influence aquatic macroinvertebrate assemblages in perennial versus temporary Mediterranean streams? Aquatic Science 73: 567–579.CrossRefGoogle Scholar
  15. García-Roger, E. M., M. del Mar Sańchez-Montoya, N. Cid, S. Erba, I. Karaouzas, I. Verkaik, M. Rieradevall, R. Gómez, M. A. Suárez, M. R. Vidal-Abarca, D. DeMartini, A. Buffagni, N. Skoulikidis, N. Bonada & N. Prat, 2013. Spatial scale effects on taxonomic and biological trait diversity of aquatic macroinvertebrates in Mediterranean streams. Fundamental and Applied Limnology 183: 89–105.CrossRefGoogle Scholar
  16. Gritzalis, K. C., I. Karaouzas & N. Skoulikidis, 2006. Assessing the ecological quality of running waters of Thrace region (N.E. Greece) by the use of macroinvertebrate indicators. Fresenius Environmental Bulletin 15: 1182–1188.Google Scholar
  17. Hill, M. O., 1979. DECORANA—A FORTRAN Program for Detrended Correspondence Analysis and Reciprocol Averaging. Ecology and Systematics. Cornell University, New York.Google Scholar
  18. Iliopoulou-Georgudaki, J., V. Kantzaris, P. Katharios, T. Kaspiris, T. Georgiadis & B. Montesantou, 2003. An application of different bioindicators for assessing water quality: a case study in the rivers Alfeios and Pineios (Peloponnisos, Greece). Ecological Indicators 2: 345–360.CrossRefGoogle Scholar
  19. Karaouzas, I. & K. C. Gritzalis, 2006. Local and regional factors determining aquatic and semi-aquatic bug (Heteroptera) assemblages in rivers and streams of Greece. Hydrobiologia 573: 199–212.CrossRefGoogle Scholar
  20. Karaouzas, I., K. C. Gritzalis & N. T. Skoulikidis, 2007. Land use effects on macroinvertebrate assemblages and stream quality along an agricultural river basin. Fresenius Environmental Bulletin 16: 645–653.Google Scholar
  21. Karaouzas, I., N. T. Skoulikidis, U. Giannakou & T. A. Albanis, 2011. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status. Water Research 45: 6334–6346.CrossRefPubMedGoogle Scholar
  22. Klink, A. G. & H. K. M. Moller Pillot, 2003. Chironomidae Larvae. Key to Higher Taxa and Species of the Lowlands of Northwestern Europe. ETI, Amsterdam, [CD-ROM].Google Scholar
  23. Langton, P. H., 1984. A Key to Pupal Exuviae of West Palaearctic Chironomidae. Privately published by P.H, Langton.Google Scholar
  24. Langton P. H. & H. Visser, 2003. Chironomidae exuviae. A Key to Pupal Exuviae of the West Palearctic Region, ETI, Amsterdam, [CD-ROM].Google Scholar
  25. Laville, H. & F. Reiss, 1992. The chironomid fauna of the Mediterranean region reviewed. Netherlands Journal of Aquatic Ecology 26: 239–245.CrossRefGoogle Scholar
  26. Lencioni, V., L. Marziali & B. Rossaro, 2012. Chironomids as bioindicators of environmental quality in mountain springs. Freshwater Science 31: 525–541.CrossRefGoogle Scholar
  27. López-Doval, J. C., M. Großschartner, S. Höss, C. Orendt, W. Traunspurger, G. Wolfram & I. Muñoz, 2010. Invertebrate communities in soft sediments along a pollution gradient in a Mediterranean river (Llobregat, NE Spain). Limnetica 29: 311–322.Google Scholar
  28. Marziali, L. & B. Rossaro, 2013. Response of chironomid species (Diptera, Chironomidae) to water temperature: effects on species distribution in specific habitats. Journal of the Entomological and Acarological Research 45: 73–89.CrossRefGoogle Scholar
  29. Marziali, L., D. G. Armanini, M. Cazzola, S. Erba, E. Toppi, A. Buffagni & B. Rossaro, 2010. Responses of chironomid larvae (Insecta, Diptera) to ecological quality in mediterranean river mesohabitats (South Italy). River Research and Application 26: 1036–1051.Google Scholar
  30. Moller Pillot, H. K. M., 2009a. Chironomidae larvae. Biology and ecology of the Chironomini. KNNV Publishing, Zeist: 270.CrossRefGoogle Scholar
  31. Moller Pillot H. K. M., 2009b. A Key to the Larvae of the Aquatic Chironomidae of the North-West European Lowlands, private print, not published.Google Scholar
  32. Moller Pillot, H. K. M., 2013. Chironomidae Larvae. Biology and ecology of the Orthocladiinae. KNNV Publishing, Zeist: 312.Google Scholar
  33. Nikolaidis, N., N., Skoulikidis, N., Kalogerakis, K., Tsakiris, 2009. Environmental Friendly Technologies for Rural Development, Final Report 2005–09, LIFE-ENVIRONMENT LIFE05ENV/Gr/000245 EE (EnviFriendly).Google Scholar
  34. Nicolaidou, A., K. Petrou, K. A. Kormas & S. Reizopoulou, 2006. Inter-annual variability of soft bottom macrofaunal communities in two Ionian Sea lagoons. Hydrobiologia 555: 89–98.CrossRefGoogle Scholar
  35. Płóciennik, Μ. & I. Karaouzas, 2014. The Chironomidae (Diptera) fauna of Greece: zoogeographical distributions and patterns, taxalist and new records. Annales de Limnologie—International. Journal of Limnology 50: 19–34.CrossRefGoogle Scholar
  36. Qinghong, L., 1997. Variation partitioning by partial redundancy analysis (RDA). Environmetrics 8: 75–85.CrossRefGoogle Scholar
  37. Rossaro, B., 1991. Factors that determine Chironomidae species distribution in fresh water. Bolletino di Zoologia 58: 281–286.CrossRefGoogle Scholar
  38. Rossaro, B., 1992. Ordination methods on chironomid species in stony bottom streams. Netherlands Journal of Aquatic Ecology 26: 447–456.CrossRefGoogle Scholar
  39. Rossaro, B. & A. Pietrangelo, 1993. Macroinvertebrates distribution in springs: a comparison of CA ordination with benthic indices. Hydrobiologia 263: 109–118.CrossRefGoogle Scholar
  40. Sabater, S., V. Acuña, A. Giorgi, E. Guerra, I. Muñoz & A. M. Romaní, 2005. Effects of nutrient inputs in a forested Mediterranean stream under moderate light availability. Archiv für Hydrobiologie 163: 479–496.CrossRefGoogle Scholar
  41. Sánchez-Montoya, M. M., M. R. Vidal-Abarca, T. Puntí, J. M. Poquet, N. Prat, M. Rieradevall, J. Alba-Tercedor, C. Zamore-Muñoz, M. Toro, S. Robles, M. Álvarez & M. L. Suárez, 2009. Defining criteria to select reference sites in Mediterranean streams. Hydrobiologia 619: 39–54.CrossRefGoogle Scholar
  42. Skoulikidis N., A., Economou, I., Karaouzas, L., Vardakas, K., Gritzalis, S., Zogaris, E., Dimitriou, V., Tachos, 2008. Hydrological and biogeochemical monitoring in evrotas basin. Final technical report 1, H.C.M.R. LIFE-ENVIRONMENT: LIFE05 ENV/GR/000245 « ENVIRON-MENTAL FRIENDLY TECHNOLOGIES FOR RURAL DEVELOPMENT.Google Scholar
  43. Skoulikidis, N., L. Vardakas, I. Karaouzas, A. Economou, E. Dimitriou & S. Zogaris, 2011. Assessing water stress in Mediterranean lotic systems: insights from an artificially intermittent river in Greece. Aquatic Sciences 73: 581–597.CrossRefGoogle Scholar
  44. Ter Braak, C. J. F. & C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.CrossRefGoogle Scholar
  45. Ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO, Software for Canonical community Ordination (ver. 4.05). Centre for Biometry, Wageningen.Google Scholar
  46. Vallenduuk, H. J. & H. K. M. Moller Pillot, 2007. Chironomidae Larvae of the Netherlands and Adjacent Lowlands. General ecology and Tanypodinae. KNNV Publishing, Zeist. 143 p.Google Scholar
  47. van de Bund W.J., 2009. Water Framework Directive intercalibration technical report. Part 1: rivers. JRC Scientific and Technical Reports. ISSN 1018-5593, pp. 179.Google Scholar
  48. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  49. Wilson R. S. & L. P. Ruse, 2005. A guide to the identification of genera of chironomid pupal exuviae occurring in Britain and Ireland (including common genera from northern Europe) and their use in monitoring lotic and lentic fresh waters. The Freshwater Biological Association. The Ferry House, Far Sawrey, Ambleside.Google Scholar
  50. Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica Supplement 19: 1–457.Google Scholar
  51. Zogaris, S., A. N. Economou & P. Dimopoulos, 2009. Ecoregions in the Southern Balkans: should they be revised? Environmental Management 43: 682–697.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Marine Biological Resources and Inland WatersHellenic Centre for Marine ResearchAnavissosGreece
  2. 2.Department of Invertebrate Zoology and HydrobiologyUniversity of LodzLodzPoland

Personalised recommendations