, Volume 766, Issue 1, pp 381–392 | Cite as

Trait-based responses of caddisfly assemblages to the partial channelization of a High-Andean stream

Primary Research Paper


The importance of channel complexity in maintaining biological integrity and ecosystem functioning has been addressed by several researchers. In spite of this, High-Andean streams are being channelized without regard to the effect that channelization might have on stream communities. To attempt to determine these effects, the present study evaluated how caddisfly assemblages respond to channelization in a High-Andean stream. A trait-based approach was used to compare trait-based responses, and the degree of functional homogenization caused by channelization. A total of seven traits are described: (i) ‘Food,’ (ii) ‘Feeding habits,’ (iii) ‘Maximum body size,’ (iv) ‘Adaptation to flow constrains,’ (v) ‘Body flexibility,’ (vi) ‘Case-material,’ and (vii) ‘Case-shape.’ Both the functional structure of the assemblages and the channel complexity of the channelized site were characterized and compared to those of two undisturbed sites. The results suggest that certain genera become dominant as a result of the environmental changes caused by partial channelization. Specifically, assemblages underwent significant specialization in ‘Food,’ ‘Feeding habits,’ and ‘Case-shape,’ and this was linked to the homogenization in mesohabitat type and in hydraulic variability. The trends evident in the trait-based responses may serve as a basis for proposing and assessing strategies to restore the hydromorphological integrity of High-Andean streams.


Channelization High-Andean stream Channel complexity Trait-based approach Trichoptera Caddisfly assemblages 



The author would like to thank J. Ch. Donato-Rondon and two anonymous reviewers for their helpful comments on the manuscript, and Neil Hunt for correcting the English text. Special thanks to L. Alonso-Moreno, M. González Oviedo, E. C. González Trujillo, J. P. Álvarez-Silva, G. Giraldo, O. Combita, and R. Ospina for their help in the field and the laboratory, and to Nevardo and Carlos Bello (‘Acueducto de Bogotá – E.A.B.’) who provided access to ‘La Vieja’ stream.

Supplementary material

10750_2015_2474_MOESM1_ESM.docx (197 kb)
Supplementary material 1 (DOCX 197 kb)


  1. Angrisano, E. B. & J. V. Sganga, 2009. Trichoptera. In Dominguez, E. & H. R. Fernández (eds), Macroinvertebrados bentónicos sudamericanos: sistemática y ecología (255–308). Fundación Miguel Lillo, Tucumán: 255–308.Google Scholar
  2. Armitage, P. D. & I. Pardo, 1995. Impact assessment of regulation at the reach level using macroinvertebrate information from Mesohabitats: Regulated Rivers. Research & Management 10: 147–158.Google Scholar
  3. Beisel, J. N., P. Usseglio-Polatera, S. Thomas & J. C. Moreteau, 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389: 73–88.CrossRefGoogle Scholar
  4. Beisel, J. N., P. Usseglio-Polatera & J. C. Moreteau, 2000. The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia 422–423: 163–171.CrossRefGoogle Scholar
  5. Bonada, N., C. Zamora-Muñoz, M. Rieradevall & N. Prat, 2004. Ecological profiles of caddisfly larvae in Mediterranean streams: implications for bioassessment methods. Environmental Pollution 132: 509–521.PubMedCrossRefGoogle Scholar
  6. Boyero, L., 2003. The quantification of local substrate heterogeneity in streams and its significance for macroinvertebrate assemblage. Hydrobiologia 499: 161–168.CrossRefGoogle Scholar
  7. Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.CrossRefGoogle Scholar
  8. Demars, B. O. L., J. L. Kemp, N. Friberg, P. Usseglio-Polatera & D. M. Harper, 2012. Linking biotopes to invertebrates in rivers: biological traits, taxonomic composition and diversity. Ecological Indicators 23: 301–311.CrossRefGoogle Scholar
  9. Dohet, A., D. Dolisy, L. Hoffmann & M. Dufrêne, 2002. Identification of bioindicator species among Ephemeroptera, Plecoptera and Trichoptera in a survey of streams belonging to the rhithral classification in the Grand Duchy of Luxembourg. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 28: 381–386.Google Scholar
  10. Dolédec, S. & B. Statzner, 2008. Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freshwater Biology 53: 617–634.CrossRefGoogle Scholar
  11. Dolédec, S., B. Statzner & M. Bournaud, 1999. Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshwater Biology 42: 737–758.CrossRefGoogle Scholar
  12. Edwards, C. J., B. L. Griswold, R. A. Tubb, E. C. Weber & L. C. Woods, 1984. Mitigating effects of artificial riffles and pools on the fauna of a channelized warmwater stream. North American Journal of Fisheries Management 4: 194–203.CrossRefGoogle Scholar
  13. Elosegi, A. & S. Sabater, 2013. Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia 712: 129–143.CrossRefGoogle Scholar
  14. Elosegi, A., J. Diez & M. Mutz, 2010. Effects of the hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657: 199–215.CrossRefGoogle Scholar
  15. Gotsner, W., M. Alp, J. A. Schleiss & C. T. Robinson, 2013. The hydromorphological index of diversity: a tool for describing habitat heterogeneity in river engineering projects. Hydrobiologia 712: 43–60.CrossRefGoogle Scholar
  16. Growns, I. O. & J. A. Davis, 1994. Longitudinal changes in near-bed flows and macroinvertebrate communities in a Western Australian stream. Journal of the North American Benthological Society 13: 417–438.CrossRefGoogle Scholar
  17. Gutiérrez, J. D., 2006. Caracterización del metabolismo y de la oferta de recursos de Materia orgánica para la fauna de macroinvertebrados bentónicos en una quebrada de montaña de orden menor. Doctoral Thesis, Universidad Nacional de Colombia.Google Scholar
  18. Heino, J., P. Louhi & T. Moutka, 2004. Identifying the scales of variability in stream macroinvertebrate abundance, functional composition and assemblage structure. Freshwater Biology 49: 1230–1239.CrossRefGoogle Scholar
  19. Holzenthal, R. W., J. C. Morse & K. M. Kjer, 2011. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148: 209–211.Google Scholar
  20. Hutchinson, G. E., 1957. The multivariate niche. Cold Spring Harbor Symposia on Quantitative Biology XXII: 415–427.CrossRefGoogle Scholar
  21. Lamouroux, N., S. Dolédec & S. Gayraud, 2004. Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society 23: 449–466.CrossRefGoogle Scholar
  22. Lancaster, J. & B. J. Downes, 2010. Ecohydraulics needs to embrace ecology and sound science, and to avoid mathematical artifacts. River Research and Applications 26: 921–929.CrossRefGoogle Scholar
  23. Li, H. & J. F. Reynolds, 1995. On definition and quantification of heterogeneity. Oikos 73: 280–284.CrossRefGoogle Scholar
  24. Li, J., A. Herlihy, W. Gerth, P. Kaufmann, S. Gregory, S. Urquhart, & D.P. Larsen, 2001. Variability in stream macroinvertebrates at multiple spatial scales.Freshwater Biology 46: 87–97.CrossRefGoogle Scholar
  25. Mackay, R. J. & G. B. Wiggins, 1979. Ecological diversity in Trichoptera. Annual Review of Entomology 24: 185–208.CrossRefGoogle Scholar
  26. Malm, T., K. A. Johanson & N. Wahlberg, 2013. The evolutionary history of Trichoptera (Insecta): a case of successful adaptation to life in freshwater. Systematic Entomology 38: 459–473.CrossRefGoogle Scholar
  27. McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178–185.PubMedCrossRefGoogle Scholar
  28. Menezes, S., D. J. Baird & A. M. Soares, 2010. Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology 47: 711–719.CrossRefGoogle Scholar
  29. Mérigoux, S. & S. Dolédec, 2004. Hydraulic requirements of stream communities: a case study on invertebrates. Freshwater Biology 49: 600–613.CrossRefGoogle Scholar
  30. Mondy, C. P. & P. Usseglio-Polatera, 2014. Using fuzzy-coded traits to elucidate the non-random role of anthropogenic stress in the functional homogenization of invertebrate assemblages. Freshwater Biology 59: 584–600.CrossRefGoogle Scholar
  31. Moutka, T. & P. Laasonen, 2002. Ecosystem recovery in restored headwater streams: the role of enhanced litter retention. Journal of Applied Ecology 39: 145–156.CrossRefGoogle Scholar
  32. Negishi, J. N. & J. S. Richardson, 2003. Responses of organic matter and macroinvertebrates to placements of Boulder clusters in a small stream of southwestern British, Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 247–258.CrossRefGoogle Scholar
  33. Negishi, J. N., M. Inoue & M. Nunokawa, 2002. Effects of channelisation on stream habitat in relation to a spate and flow refugia for macroinvertebrates in northern Japan. Freshwater Biology 47: 515–517.CrossRefGoogle Scholar
  34. Posada-García, J. A. & G. Roldán-Pérez, 2003. Clave ilustrada y diversidad de las larvas de Trichoptera en el nor-occidente de Colombia. Caldasia 25: 169–192.Google Scholar
  35. Quinn, J. M., R. B. Williamson, R. K. Smith & M. L. Vickers, 1992. Effects of riparian grazing and channelisation on streams in Southland, New Zealand. 2. Benthic invertebrates. New Zealand Journal of Marine and Freshwater Research 26: 259–273.CrossRefGoogle Scholar
  36. R Core Team 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  37. Resh, V. H., 1992. Recent trends in the use of Trichoptera in water quality monitoring. Proceedings of the seventh International Symposium on Trichoptera 1992: 285–291.Google Scholar
  38. Scarsbrook, M. R. & C. R. Townsend, 1993. Stream community structure in relation to spatial and temporal variation: a habitat templet study of two contrasting New Zealand streams. Freshwater Biology 29: 395–410.CrossRefGoogle Scholar
  39. Schmera, D. & T. Eros, 2004. Effect of riverbed morphology, stream order and season on the structural and functional attributes of caddisfly assemblages (Insecta: Trichoptera). International Journal of Limnology 40: 193–200.CrossRefGoogle Scholar
  40. Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–365.CrossRefGoogle Scholar
  41. Statzner, B. & L. A. Bêche, 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80–119.CrossRefGoogle Scholar
  42. Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.CrossRefGoogle Scholar
  43. Tachet, H., P. Usseglio-Polatera & C. Roux, 1994. Theoretical habitat templets, species traits, and species richness: Trichoptera in the Upper Rhône River and its floodplain. Freshwater Biology 31: 397–416.CrossRefGoogle Scholar
  44. Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.CrossRefGoogle Scholar
  45. Tomanova, S. & P. Usseglio-Polatera, 2007. Patterns of Benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology 170: 243–255.CrossRefGoogle Scholar
  46. Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31: 265–275.CrossRefGoogle Scholar
  47. Townsend, C. R., M. R. Scarsbrook & S. Dolédec, 1997. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. Journal of the North American Benthological Society 16: 531–544.CrossRefGoogle Scholar
  48. Vázquez-Ramos, J., G. Guevara-Cardona & G. Reinoso-Flórez, 2014. Environmental factors associated with habitat preferences by caddisfly larvae in tropical dry forest watersheds (Tolima, Colombia). Revista de Biología Tropical 62: 21–40.CrossRefGoogle Scholar
  49. Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.PubMedCrossRefGoogle Scholar
  50. Wiggins, G., 2004. Caddisflies: The Underwater Architects. University of Toronto Press, Toronto.Google Scholar
  51. Wiggins, G. B. & W. Wichard, 1989. Phylogeny of pupation in Trichoptera, with proposals on the origin and higher classification of the order. Journal of the North American Benthological Society 8: 260–276.CrossRefGoogle Scholar
  52. Wilcock, D. N. & C. I. Essery, 1991. Environmental impacts of channelization on the River Main, County Antrim, Northern Ireland. Journal of Environmental Management 32: 127–143.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Biology DepartmentNational University of ColombiaBogotá D.C.Colombia

Personalised recommendations