, Volume 767, Issue 1, pp 37–49 | Cite as

Conspecific alarm cues affect interspecific aggression in cichlid fishes

  • Denis Meuthen
  • Sebastian A. Baldauf
  • Theo C. M. Bakker
  • Timo Thünken
Primary Research Paper


Individuals have to respond simultaneously to different environmental factors often making trade-offs between conflicting demands necessary. Many freshwater ecosystems are resource-limited and both intra- and interspecific competitiveness is a common requirement to gain and defend resources necessary for reproduction. Although predation risk is an important selective force affecting behavioral decisions, little is known about the impact of predation risk on interspecific competition. Here, we investigate whether chemically mediated predation risk affects interspecific territorial aggression by the freshwater cichlid Pelvicachromis taeniatus. In our experiments, territorial P. taeniatus males were visually confronted with a territorial intruder: a heterospecific, sympatric cichlid (Benitochromis nigrodorsalis) which generally induced aggression in P. taeniatus. Predation risk for P. taeniatus was simulated by a concurrent release of conspecific chemical alarm cues. In control treatments, no chemical cues, dissolved heterospecific alarm cues, or aliquots of distilled water were provided during these aggressive encounters. The results show that interspecific aggression of territorial male P. taeniatus is significantly decreased under predation risk compared to the control treatments. This suggests that interspecific competition becomes less intense under concurrent predation risk. As this process could hinder competitive exclusion, predation risk may indirectly promote and stabilize biodiversity in natural ecosystems.


Pelvicachromis taeniatus Pelvicachromis kribensis Alarm cues Interspecific aggression Interspecific competition Predation risk 



The authors thank the Bakker research group for discussion of the manuscript. K. Langen and M. Hiermes are acknowledged for useful comments on the manuscript. Furthermore, we thank three anonymous referees for their thoughtful comments which substantially improved the manuscript. This research was funded by the Deutsche Forschungsgemeinschaft (DFG: BA 2885/5-1, TH 1615/1-1).

Supplementary material

10750_2015_2473_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)


  1. Adler, F. R. & C. D. Harvell, 1990. Inducible defenses, phenotypic variability and biotic environments. Trends in Ecology and Evolution 5: 407–410.PubMedCrossRefGoogle Scholar
  2. Amarasekare, P., 2002. Interference competition and species coexistence. Proceedings of the Royal Society B 269: 2541–2550.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baldauf, S. A., H. Kullmann, S. H. Schroth, T. Thünken & T. C. M. Bakker, 2009. You can’t always get what you want: size assortative mating by mutual mate choice as a resolution of sexual conflict. BMC Evolutionary Biology 9: 129.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Baldauf, S. A., T. C. M. Bakker, H. Kullmann & T. Thünken, 2011. Female nuptial coloration and its adaptive significance in a mutual mate choice system. Behavioral Ecology 22: 478–485.CrossRefGoogle Scholar
  5. Barlow, G. W., 2000. The Cichlid Fishes. Perseus Publishing, Cambridge.Google Scholar
  6. Barreto, R. E., A. Barbosa, A. C. C. Giassi & A. Hoffmann, 2010. The ‘club’ cell and behavioural and physiological responses to chemical alarm cues in the Nile tilapia. Marine and Freshwater Behaviour and Physiology 43: 75–81.CrossRefGoogle Scholar
  7. Barreto, R. E., C. A. Miyai, F. H. C. Sanches, P. C. Giaquinto, H. C. Delicio & G. L. Volpato, 2013. Blood cues induce antipredator behavior in Nile tilapia conspecifics. PLoS One 8: e54642.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Begon, M., C. R. Townsend & J. L. Harper, 2005. Ecology: From Individuals to Ecosystems. Blackwell Science, Oxford.Google Scholar
  9. Bengtsson, J., 1989. Interspecific competition increases local extinction rate in a metapopulation system. Nature 340: 713–715.CrossRefGoogle Scholar
  10. Berejikian, B. A., R. J. F. Smith, E. P. Tezak, S. L. Schroder & C. M. Knudsen, 1999. Chemical alarm signals and complex hatchery rearing habitats affect antipredator behavior and survival of chinook salmon (Oncorhynchus tshawytscha) juveniles. Canadian Journal of Fisheries and Aquatic Sciences 56: 830–838.CrossRefGoogle Scholar
  11. Bierbach, D., M. Schulte, N. Herrmann, M. Tobler, S. Stadler, C. T. Jung, B. Kunkel, R. Riesch, S. Klaus, M. Ziege, J. R. Indy, L. Arias-Rodriguez & M. Plath, 2011. Predator-induced changes of female mating preferences: innate and experiential effects. BMC Evolutionary Biology 11: 190.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bjørnstad, O. N. & B. T. Grenfell, 2001. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293: 638–643.PubMedCrossRefGoogle Scholar
  13. Bolnick, D. I., 2004. Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks. Evolution 58: 608–618.PubMedCrossRefGoogle Scholar
  14. Bourke, P., P. Magnan & M. A. Rodriguez, 1999. Phenotypic responses of lacustrine brook charr in relation to the intensity of interspecific competition. Evolutionary Ecology 13: 19–31.CrossRefGoogle Scholar
  15. Brick, O. & S. Jakobsson, 2002. Individual variation in risk taking: the effect of a predatory threat on fighting behavior in Nannacara anomala. Behavioral Ecology 13: 439–442.CrossRefGoogle Scholar
  16. Brönmark, C. & J. G. Miner, 1992. Predator-induced phenotypical change in body morphology in crucian carp. Science 258: 1348–1350.PubMedCrossRefGoogle Scholar
  17. Brown, G. E., 2003. Learning about danger: chemical alarm cues and local risk assessment in prey fishes. Fish and Fisheries 4: 227–234.CrossRefGoogle Scholar
  18. Brown, G. E., D. P. Chivers & R. J. F. Smith, 1995. Fathead minnows avoid conspecific and heterospecific alarm pheromones in the feces of northern pike. Journal of Fish Biology 47: 387–393.Google Scholar
  19. Brown, G. E., J. C. Adrian, T. Patton & D. P. Chivers, 2001. Fathead minnows learn to recognize predator odour when exposed to concentrations of artificial alarm pheromone below their behavioural-response threshold. Canadian Journal of Zoology 79: 2239–2245.CrossRefGoogle Scholar
  20. Brown, G. E., P. E. Foam, H. E. Cowell, P. G. Fiore & D. P. Chivers, 2004. Production of chemical alarm cues in convict cichlids: the effects of diet, body condition and ontogeny. Annales Zoologici Fennici 41: 487–499.Google Scholar
  21. Brown, G. E., M. A. Vavrek, C. K. Elvidge, R. DeCaire, B. Belland & C. D. Jackson, 2008. Disturbance cues in freshwater prey fishes: do juvenile convict cichlids and rainbow trout respond to ammonium as an ‘early warning’ signal? Chemoecology 18: 255–261.CrossRefGoogle Scholar
  22. Brown, G. E., C. D. Jackson, P. H. Malka, M. E. Jacques & M. A. Couturier, 2012. Disturbance cues in freshwater prey fishes: does urea function as an ‘early warning cue’ in juvenile convict cichlids and rainbow trout? Current Zoology 58: 250–259.Google Scholar
  23. Brown, G. E., M. C. O. Ferrari, C. K. Elvidge, I. Ramnarine & D. P. Chivers, 2013. Phenotypically plastic neophobia: a response to variable predation risk. Proceedings of the Royal Society B 280: 20122712.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Brown, G. E., D. P. Chivers, C. K. Elvidge, C. D. Jackson & M. C. O. Ferrari, 2014. Background level of risk determines the intensity of predator neophobia in juvenile convict cichlids. Behavioral Ecology and Sociobiology 68: 127–133.CrossRefGoogle Scholar
  25. Bürger, R., K. A. Schneider & M. Willensdorfer, 2006. The conditions for speciation through intraspecific competition. Evolution 60: 2185–2206.PubMedCrossRefGoogle Scholar
  26. Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31: 343–366.CrossRefGoogle Scholar
  27. Chivers, D. P. & R. J. F. Smith, 1994a. Fathead minnows, Pimephales promelas, acquire predator recognition when alarm substance is associated with the sight of unfamiliar fish. Animal Behaviour 48: 597–605.CrossRefGoogle Scholar
  28. Chivers, D. P. & R. J. F. Smith, 1994b. The role of experience and chemical alarm signaling in predator recognition by fathead minnows, Pimephales promelas. Journal of Fish Biology 44: 273–285.CrossRefGoogle Scholar
  29. Chivers, D. P. & R. J. F. Smith, 1998. Chemical alarm signalling in aquatic predator–prey systems: a review and prospectus. Ecoscience 5: 338–352.Google Scholar
  30. Chivers, D. P., G. E. Brown & M. C. O. Ferrari, 2012. The evolution of alarm substances and disturbance cues in aquatic animals. In Brönmark, C. & L. A. Hansson (eds), Chemical Ecology in Aquatic Systems. Oxford University Press, Oxford.Google Scholar
  31. Chivers, D. P., M. I. McCormick, M. D. Mitchell, R. A. Ramasamy & M. C. O. Ferrari, 2014. Background level of risk determines how prey categorize predators and non-predators. Proceedings of the Royal Society B 281: 20140355.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Clark, C. W. & C. D. Harvell, 1992. Inducible defenses and the allocation of resources—a minimal model. American Naturalist 139: 521–539.CrossRefGoogle Scholar
  33. Cramer, N. F. & R. M. May, 1972. Interspecific competition, predation and species diversity: a comment. Journal of Theoretical Biology 34: 289–293.PubMedCrossRefGoogle Scholar
  34. Crow, S. K., G. P. Closs, J. M. Waters, D. J. Booker & G. P. Wallis, 2010. Niche partitioning and the effect of interspecific competition on microhabitat use by two sympatric galaxiid stream fishes. Freshwater Biology 55: 967–982.CrossRefGoogle Scholar
  35. Dodson, S. I., T. A. Crowl, B. L. Peckarsky, L. B. Kats, A. P. Covich & J. M. Culp, 1994. Non-visual communication in freshwater benthos—an overview. Journal of the North American Benthological Society 13: 268–282.CrossRefGoogle Scholar
  36. Ferrari, M. C. O., B. D. Wisenden & D. P. Chivers, 2010. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of Zoology 88: 698–724.CrossRefGoogle Scholar
  37. Foam, P. E., M. C. Harvey, R. S. Mirza & G. E. Brown, 2005. Heads up: juvenile convict cichlids switch to threat-sensitive foraging tactics based on chemosensory information. Animal Behaviour 70: 601–607.CrossRefGoogle Scholar
  38. Forsgren, E., 1992. Predation risk affects mate choice in a gobiid fish. American Naturalist 140: 1041–1049.CrossRefGoogle Scholar
  39. Genner, M. J., G. F. Turner & S. J. Hawkins, 1999. Resource control by territorial male cichlid fish in Lake Malawi. Journal of Animal Ecology 68: 522–529.CrossRefGoogle Scholar
  40. Ghedotti, M. J., 2000. Phylogenetic analysis and taxonomy of the poecilioid fishes (Teleostei: Cyprinodontiformes). Zoological Journal of the Linnean Society 130: 1–53.CrossRefGoogle Scholar
  41. Göz, H., 1941. Über den Art- und Individualgeruch bei Fischen. Zeitschrift für vergleichende Physiologie 29: 1–45.CrossRefGoogle Scholar
  42. Grether, G. F., N. Losin, C. N. Anderson & K. Okamoto, 2009. The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biological Reviews 84: 617–635.PubMedCrossRefGoogle Scholar
  43. Grether, G. F., C. N. Anderson, J. P. Drury, A. N. G. Kirschel, N. Losin, K. Okamoto & K. S. Peiman, 2013. The evolutionary consequences of interspecific aggression. Annals of the New York Academy of Sciences 1289: 48–68.PubMedCrossRefGoogle Scholar
  44. Hesse, S., T. C. M. Bakker, S. A. Baldauf & T. Thünken, 2012. Kin recognition by phenotype matching is family- rather than self-referential in juvenile cichlid fish. Animal Behaviour 84: 451–457.CrossRefGoogle Scholar
  45. Holmes, T. H. & M. I. McCormick, 2010. Smell, learn and live: the role of chemical alarm cues in predator learning during early life history in a marine fish. Behavioural Processes 83: 299–305.PubMedCrossRefGoogle Scholar
  46. Huisman, J. & F. J. Weissing, 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407–410.CrossRefGoogle Scholar
  47. Jackson, D. A., P. R. Peres-Neto & J. D. Olden, 2001. What controls who is where in freshwater fish communities—the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 157–170.Google Scholar
  48. Kats, L. B. & L. M. Dill, 1998. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5: 361–394.Google Scholar
  49. Kim, J. W., G. E. Brown & J. W. A. Grant, 2004. Interactions between patch size and predation risk affect competitive aggression and size variation in juvenile convict cichlids. Animal Behaviour 68: 1181–1187.CrossRefGoogle Scholar
  50. Kneitel, J. M. & J. M. Chase, 2004. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecology Letters 7: 69–80.CrossRefGoogle Scholar
  51. Kohda, M., 1991. Intra- and interspecific social organization among three herbivorous cichlid fishes in Lake Tanganyika. Japanese Journal of Ichthyology 38: 147–163.Google Scholar
  52. Lakowitz, T., C. Brönmark & P. Nyström, 2008. Tuning into multiple predators: conflicting demands for shell morphology in a freshwater snail. Freshwater Biology 53: 2184–2191.Google Scholar
  53. Lamboj, A., 2004. Die Cichliden des westlichen Afrikas. Birgit Schmettkamp Verlag, Bornheim.Google Scholar
  54. Lamboj, A., 2014. Revision of the Pelvicachromis taeniatus-group (Perciformes), with revalidation of the taxon Pelvicachromis kribensis (Boulenger, 1911) and description of a new species. Cybium 38: 205–222.Google Scholar
  55. Lawrence, B. J. & R. J. F. Smith, 1989. Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. Journal of Chemical Ecology 15: 209–219.PubMedCrossRefGoogle Scholar
  56. Leibold, M. A., 1996. A graphical model of keystone predators in food webs: Trophic regulation of abundance, incidence, and diversity patterns in communities. American Naturalist 147: 784–812.CrossRefGoogle Scholar
  57. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  58. Lima, S. L., 1998. Stress and decision making under the risk of predation: Recent developments from behavioral, reproductive, and ecological perspectives. Stress and Behavior 27: 215–290.CrossRefGoogle Scholar
  59. Lima, S. L. & L. M. Dill, 1990. Behavioral decisions made under the risk of predation—a review and prospectus. Canadian Journal of Zoology 68: 619–640.CrossRefGoogle Scholar
  60. Linke, H. & W. Staeck, 2002. Afrikanische Cichliden I: Buntbarsche aus Westafrika. Tetra Verlag GmbH, Bissendorf.Google Scholar
  61. Maruyama, A., B. Rusuwa & M. Yuma, 2010. Asymmetric interspecific territorial competition over food resources amongst Lake Malawi cichlid fishes. African Zoology 45: 24–31.CrossRefGoogle Scholar
  62. Mathis, A. & R. J. F. Smith, 1993. Chemical labeling of northern pike (Esox lucius) by the alarm pheromone of fathead minnows (Pimephales promelas). Journal of Chemical Ecology 19: 1967–1979.PubMedCrossRefGoogle Scholar
  63. Matsumoto, K. & M. Kohda, 2004. Territorial defense against various food competitors in the Tanganyikan benthophagous cichlid Neolamprologus tetracanthus. Ichthyological Research 51: 354–359.CrossRefGoogle Scholar
  64. McLennan, D. A., 2004. Male brook stickleback’ (Culaea inconstans) response to olfactory cues. Behaviour 141: 1411–1424.CrossRefGoogle Scholar
  65. Mehlis, M., T. C. M. Bakker & J. G. Frommen, 2008. Smells like sib spirit: kin recognition in three-spined sticklebacks (Gasterosteus aculeatus) is mediated by olfactory cues. Animal Cognition 11: 643–650.PubMedCrossRefGoogle Scholar
  66. Meuthen, D., S. A. Baldauf, T. C. M. Bakker & T. Thünken, 2011. Substrate-treated water: a method to enhance fish activity in laboratory experiments. Aquatic Biology 13: 35–40.CrossRefGoogle Scholar
  67. Meuthen, D., S. A. Baldauf & Thünken, T., 2014. Evolution of alarm cues: a test of the kin selection hypothesis. F1000 Research 1: 27.Google Scholar
  68. Mirza, R. S. & D. P. Chivers, 2002. Brook char (Salvelinus fontinalis) can differentiate chemical alarm cues produced by different age/size classes of conspecifics. Journal of Chemical Ecology 28: 555–564.PubMedCrossRefGoogle Scholar
  69. Mirza, R. S., J. J. Scott & D. P. Chivers, 2001. Differential responses of male and female red swordtails to chemical alarm cues. Journal of Fish Biology 59: 716–728.CrossRefGoogle Scholar
  70. Myrberg, A. A. & R. E. Thresher, 1974. Interspecific aggression and its relevance to concept of territoriality in reef fishes. American Zoologist 14: 81–96.CrossRefGoogle Scholar
  71. Nosil, P. & B. J. Crespi, 2006. Experimental evidence that predation promotes divergence in adaptive radiation. Proceedings of the National Academy of Sciences 103: 9090–9095.CrossRefGoogle Scholar
  72. Oliveira, R. F. & V. C. Almada, 1996. Dominance hierarchies and social structure in captive groups of the Mozambique tilapia Oreochromis mossambicus (Teleostei: Cichlidae). Ethology Ecology and Evolution 8: 39–55.CrossRefGoogle Scholar
  73. Parrish, J. D. & S. B. Saila, 1970. Interspecific competition, predation and species diversity. Journal of Theoretical Biology 27: 207–220.PubMedCrossRefGoogle Scholar
  74. Peeke, H. V. S. & S. C. Peeke, 1982. Parental factors in the sensitization and habituation of territorial aggression in the convict cichlid (Cichlasoma nigrofasciatum). Journal of Comparative and Physiological Psychology 96: 955–966.PubMedCrossRefGoogle Scholar
  75. Peeke, H. V. S., M. J. Herz & J. E. Gallagher, 1971. Changes in aggressive interaction in adjacently territorial convict cichlids (Cichlasoma nigrofasciatum)—study of habituation. Behaviour 40: 43–54.CrossRefGoogle Scholar
  76. Peiman, K. S. & B. W. Robinson, 2007. Heterospecific aggression and adaptive divergence in brook stickleback (Culaea inconstans). Evolution 61: 1327–1338.PubMedCrossRefGoogle Scholar
  77. Peiman, K. S. & B. W. Robinson, 2010. Ecology and evolution of resource-related heterospecific aggression. The Quarterly Review of Biology 85: 133–158.PubMedCrossRefGoogle Scholar
  78. Persson, L., 1990. A field experiment on the effects of interspecific competition from roach, Rutilus rutilus (L.), on age at maturity and gonad size in perch, Perca fluviatilis L. Journal of Fish Biology 37: 899–906.CrossRefGoogle Scholar
  79. Pettersson, L. B. & C. Brönmark, 1993. Trading off safety against food: state-dependent habitat choice and foraging in crucian carp. Oecologia 95: 353–357.CrossRefGoogle Scholar
  80. Piersma, T. & J. Drent, 2003. Phenotypic flexibility and the evolution of organismal design. Trends in Ecology and Evolution 18: 228–233.CrossRefGoogle Scholar
  81. Pimm, S. L., 1984. The complexity and stability of ecosystems. Nature 307: 321–326.CrossRefGoogle Scholar
  82. Pollock, M. S., X. X. Zhao, G. E. Brown, R. C. Kusch, R. J. Pollock & D. P. Chivers, 2005. The response of convict cichlids to chemical alarm cues: an integrated study of behaviour, growth and reproduction. Annales Zoologici Fennici 42: 485–495.Google Scholar
  83. Pomerantz, M. J., W. R. Thomas & M. E. Gilpin, 1980. Asymmetries in population growth regulated by intraspecific competition: empirical studies and model tests. Oecologia 47: 311–322.CrossRefGoogle Scholar
  84. Pritchard, J. R. & D. Schluter, 2001. Declining interspecific competition during character displacement: Summoning the ghost of competition past. Evolutionary Ecology Research 3: 209–220.Google Scholar
  85. R Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  86. Relyea, R. A., 2002. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecological Monographs 72: 523–540.CrossRefGoogle Scholar
  87. Relyea, R. A. & J. R. Auld, 2005. Predator- and competitor-induced plasticity: How changes in foraging morphology affect phenotypic trade-offs. Ecology 86: 1723–1729.CrossRefGoogle Scholar
  88. Schluter, D., 1994. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266: 798–801.PubMedCrossRefGoogle Scholar
  89. Schoener, T. W., 1973. Population growth regulated by intraspecific competition for energy or time: some simple representations. Theoretical Population Biology 4: 56–84.PubMedCrossRefGoogle Scholar
  90. Schoener, T. W., 1982. The controversy over interspecific competition. American Scientist 70: 586–595.Google Scholar
  91. Schoener, T. W., 1987. Time budgets and territory size: some simultaneous-optimization models for energy maximizers. American Zoologist 27: 259–291.CrossRefGoogle Scholar
  92. Schwarzer, J., A. Lamboj, K. Langen, B. Misof & U. Schliewen, 2015. Phylogeny and age of chromidotilapiine cichlids (Teleostei: Cichlidae). Hydrobiologia 748: 185–199.CrossRefGoogle Scholar
  93. Seger, J., 1985. Intraspecific resource competition as a cause for sympatric speciation. In Greenwood, P. J., P. H. Harvey & M. Slatkin (eds), Evolution: Essays in Honour of John Maynard Smith. Cambridge University Press, Cambridge.Google Scholar
  94. Sih, A., R. Ziemba & K. C. Harding, 2000. New insights on how temporal variation in predation risk shapes prey behavior. Trends in Ecology & Evolution 15: 3–4.CrossRefGoogle Scholar
  95. Steiger, S., T. Schmitt & H. M. Schaefer, 2011. The origin and dynamic evolution of chemical information transfer. Proceedings of the Royal Society B 278: 970–979.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Strobbe, F., M. A. McPeek, M. De Block & R. Stoks, 2011. Fish predation selects for reduced foraging activity. Behavioral Ecology and Sociobiology 65: 241–247.CrossRefGoogle Scholar
  97. Taylor, P. W. & R. W. Elwood, 2003. The mismeasure of animal contests. Animal Behaviour 65: 1195–1202.CrossRefGoogle Scholar
  98. Teplitsky, C., S. Plenet & P. Joly, 2005. Costs and limits of dosage response to predation risk: to what extent can tadpoles invest in anti-predator morphology? Oecologia 145: 364–370.PubMedCrossRefGoogle Scholar
  99. Thünken, T., T. C. M. Bakker, S. A. Baldauf & H. Kullmann, 2007. Active inbreeding in a cichlid fish and its adaptive significance. Current Biology 17: 225–229.PubMedCrossRefGoogle Scholar
  100. Thünken, T., N. Waltschyk, T. C. M. Bakker & H. Kullmann, 2009. Olfactory self-recognition in a cichlid fish. Animal Cognition 12: 717–724.PubMedCrossRefGoogle Scholar
  101. Thünken, T., D. Meuthen, T. C. M. Bakker & H. Kullmann, 2010. Parental investment in relation to offspring quality in the biparental cichlid fish Pelvicachromis taeniatus. Animal Behaviour 80: 69–74.CrossRefGoogle Scholar
  102. Thünken, T., S. A. Baldauf, H. Kullmann, J. Schuld, S. Hesse & T. C. M. Bakker, 2011. Size-related inbreeding preference and competitiveness in male Pelvicachromis taeniatus (Cichlidae). Behavioral Ecology 22: 358–362.CrossRefGoogle Scholar
  103. Tilman, D., 2000. Causes, consequences and ethics of biodiversity. Nature 405: 208–211.PubMedCrossRefGoogle Scholar
  104. Uriarte, M., C. D. Canham & R. B. Root, 2002. A model of simultaneous evolution of competitive ability and herbivore resistance in a perennial plant. Ecology 83: 2649–2663.CrossRefGoogle Scholar
  105. Vøllestad, L. A., K. Varreng & A. B. S. Poleo, 2004. Body depth variation in crucian carp Carassius carassius: an experimental individual-based study. Ecology of Freshwater Fish 13: 197–202.CrossRefGoogle Scholar
  106. Wisenden, B. D., 2000. Olfactory assessment of predation risk in the aquatic environment. Philosophical Transactions of the Royal Society B 355: 1205–1208.CrossRefGoogle Scholar
  107. Wisenden, B. D. & R. C. Sargent, 1997. Antipredator behaviour and suppressed aggression by convict cichlids in response to injury-released chemical cues of conspecifics but not to those of an allopatric heterospecific. Ethology 103: 283–291.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Denis Meuthen
    • 1
  • Sebastian A. Baldauf
    • 1
  • Theo C. M. Bakker
    • 1
  • Timo Thünken
    • 1
  1. 1.Institute for Evolutionary Biology and EcologyUniversity of BonnBonnGermany

Personalised recommendations