, Volume 766, Issue 1, pp 121–133 | Cite as

Effects of food availability on asexual reproduction and stress tolerance along the fast–slow life history continuum in freshwater hydra (Cnidaria: Hydrozoa)

  • Jácint Tökölyi
  • Flóra Bradács
  • Nikolett Hóka
  • Noémi Kozma
  • Máté Miklós
  • Orsolya Mucza
  • Kinga Lénárt
  • Zsófia Ősz
  • Flóra Sebestyén
  • Zoltán Barta
Primary Research Paper


Life history theory predicts that reproduction and somatic maintenance are negatively related, but the strength of this relationship is expected to depend on food availability. In this study, we investigated asexual reproduction (budding rate) and oxidative stress tolerance as two opposing facets of life history trade-offs in 17 strains of five freshwater hydra species under experimentally simulated low, medium, and high food availability. Stress tolerance was quantified by exposing animals to exogenous H2O2, which mimics reactive oxygen species arising in vivo. The five species differed in life history traits (low budding rate and high stress tolerance in Hydra vulgaris and H. circumcincta and the opposite in H. oligactis and H. viridissima; low budding rate combined with relatively low stress tolerance in H. oxycnida). Stress tolerance and asexual reproduction increased with food, but there were clear interspecific differences in this relationship. Across all strains, stress tolerance and budding rate were significantly negatively related on the low and medium, but not the high food level. These results suggest that resource allocation trade-offs are involved in determining life history traits in hydra; populations/species can be broadly positioned on a fast–slow life history continuum, and response to variation in food varies along this continuum.


Dietary restriction Food variability Hydra Life history evolution Resource allocation trade-offs 



We thank the Associate Editor, Diego Fontaneto, and two anonymous reviewers for their helpful comments on the manuscript. Financial support was provided by the SROP-4.2.2.B-15/1/KONV-2015-0001 project. The project has been supported by the European Union, co-financed by the European Social Fund.

Supplementary material

10750_2015_2449_MOESM1_ESM.docx (8 kb)
Supplementary material 1 (DOCX 7 kb)


  1. Bates, D., M. Maechler, B. Bolker, & S. Walker, 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4.
  2. Bielby, J., G. M. Mace, O. R. P. Bininda-Emonds, M. Cardillo, J. L. Gittleman, K. E. Jones, C. D. L. Orme & A. Purvis, 2007. The fast-slow continuum in mammalian life history: an empirical reevaluation. The American Naturalist 169: 748–757.PubMedCrossRefGoogle Scholar
  3. Blackburn, T. M., 1991. Evidence for a `fast-slow’ continuum of life-history traits among parasitoid Hymenoptera. Functional Ecology 5: 65–74.CrossRefGoogle Scholar
  4. Bode, H. R., K. M. Flick & P. M. Bode, 1977. Constraints on the relative sizes of the cell populations in Hydra attenuata. Journal of Cell Science 24: 31–50.PubMedGoogle Scholar
  5. Boggs, C. L., 2009. Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology 23: 27–37.CrossRefGoogle Scholar
  6. Bosch, T. C. G. & C. N. David, 1986. Male and female stem cells and sex reversal in Hydra polyps. Proceedings of the National Academy of Sciences 83: 9478–9482.CrossRefGoogle Scholar
  7. Bosch, T. C., S. M. Krylow, H. R. Bode & R. E. Steele, 1988. Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis. Proceedings of the National Academy of Sciences 85: 7927–7931.CrossRefGoogle Scholar
  8. Brennecke, T., K. Gellner & T. C. G. Bosch, 1998. The lack of a stress response in Hydra oligactis is due to reduced hsp70 mRNA stability. European Journal of Biochemistry 255: 703–709.PubMedCrossRefGoogle Scholar
  9. Bridge, D., A. G. Theofiles, R. L. Holler, E. Marcinkevicius, R. E. Steele & D. E. Martínez, 2010. FoxO and stress responses in the Cnidarian Hydra vulgaris. PLoS One 5: e11686.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bryden, R. R., 1952. Ecology of Pelmatohydra oligactis in Kirkpatricks Lake. Tennessee Ecological Monographs 22: 45.CrossRefGoogle Scholar
  11. Christensen, R. H. B., 2013. Ordinal –Regression models for ordinal data. R package version 2013.9-30. http://www.cran.r-project.org/package=ordinal/.
  12. Clobert, J., T. Garland & R. Barbault, 1998. The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution. Journal of Evolutionary Biology 11: 329–364.CrossRefGoogle Scholar
  13. Cook, C. B. & M. O. Kelty, 1982. Glycogen, protein, and lipid content of green, aposymbiotic, and nonsymbiotic hydra during starvation. Journal of Experimental Zoology 222: 1–9.CrossRefGoogle Scholar
  14. Finkel, T. & N. J. Holbrook, 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247.PubMedCrossRefGoogle Scholar
  15. Gaillard, J.-M., D. Pontier, D. Allainé, J. D. Lebreton, J. Trouvilliez, J. Clobert & D. Allaine, 1989. An analysis of demographic tactics in birds and mammals. Oikos 56: 59.CrossRefGoogle Scholar
  16. Glazier, D. S., 1999. Trade-offs between reproductive and somatic (storage) investments in animals: a comparative test of the Van Noordwijk and De Jong model. Evolutionary Ecology 13: 539–555.CrossRefGoogle Scholar
  17. Harshman, L. G. & A. J. Zera, 2007. The cost of reproduction: the devil in the details. Trends in Ecology & Evolution 22: 80–86.CrossRefGoogle Scholar
  18. Hecker, B. & L. B. Slobodkin, 1976. Responses of Hydra oligactis to temperature and feeding rate. In Mackie, G. O. (ed), Coelenterate Ecology and Behavior. Springer, New York: 175–183.CrossRefGoogle Scholar
  19. Kaliszewicz, A., 2011. Interference of asexual and sexual reproduction in the green hydra. Ecological Research 26: 147–152.CrossRefGoogle Scholar
  20. Kaliszewicz, A. & A. Lipińska, 2013. Environmental condition related reproductive strategies and sex ratio in hydras. Acta Zoologica 94: 177–183.CrossRefGoogle Scholar
  21. Kelty, M. O. & C. B. Cook, 1976. Survival during starvation of symbiotic, aposymbiotic, and non-symbiotic hydra. In Mackie, G. O. (ed), Coelenterate Ecology and Behavior. Springer, New York: 409–414.CrossRefGoogle Scholar
  22. Kessler, E., G. Kauer & M. Rahat, 1991. Excretion of sugars by Chlorella species capable and incapable of symbiosis with Hydra viridis. Botanica Acta 104: 58–63.CrossRefGoogle Scholar
  23. King, E. G., D. A. Roff & D. J. Fairbairn, 2011. Trade-off acquisition and allocation in Gryllus firmus: a test of the Y model. Journal of Evolutionary Biology 24: 256–264.PubMedCrossRefGoogle Scholar
  24. Kirk, K. L., 2001. Dietary restriction and aging –comparative tests of evolutionary hypotheses. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 56: B123–B129.CrossRefGoogle Scholar
  25. Lenhoff, H. M., 1983. Hydra: Research Methods. Plenum Press, New York and London.CrossRefGoogle Scholar
  26. Lesser, M. P., 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Review in Physiology 68: 253–278.CrossRefGoogle Scholar
  27. Martínez, D. E., 1998. Mortality patterns suggest lack of senescence in hydra. Experimental Gerontology 33: 217–225.PubMedCrossRefGoogle Scholar
  28. Martínez, D. E., A. R. Iñiguez, K. M. Percell, J. B. Willner, J. Signorovitch & R. D. Campbell, 2010. Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 57: 403–410.PubMedCrossRefGoogle Scholar
  29. Muscatine, L., 1965. Symbiosis of hydra and algae—III. Extracellular products of the algae. Comparative Biochemistry and Physiology 16: 77–92.PubMedCrossRefGoogle Scholar
  30. Muscatine, L. & H. M. Lenhoff, 1965. Symbiosis of hydra and algae. II. effects of limited food and starvation on growth of symbiotic and aposymbiotic hydra. The Biological Bulletin 129: 316–328.CrossRefGoogle Scholar
  31. Nakagawa, S., M. Lagisz, K. L. Hector & H. G. Spencer, 2012. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11: 401–409.PubMedCrossRefGoogle Scholar
  32. O’Brien, D. M., K.-J. Min, T. Larsen & M. Tatar, 2008. Use of stable isotopes to examine how dietary restriction extends Drosophila lifespan. Current Biology 18: R155–R156.PubMedCrossRefGoogle Scholar
  33. Partridge, L., M. D. W. Piper & W. Mair, 2005. Dietary restriction in Drosophila. Mechanisms of Ageing and Development 126: 938–950.PubMedCrossRefGoogle Scholar
  34. Promislow, D. E. L. & P. H. Harvey, 1990. Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology 220: 417–437.CrossRefGoogle Scholar
  35. Quinn, B., F. Gagné & C. Blaise, 2012. Hydra, a model system for environmental studies. The International Journal of Developmental Biology 56: 613–625.PubMedCrossRefGoogle Scholar
  36. Reisa, J., 1973. Ecology of hydra. In Burnett, A. (ed), Biology of Hydra. Academic Press, New York and London: 59–105.Google Scholar
  37. Reznick, D., L. Nunney, A. Tessier, D. Reznick, L. Nunney, A. Tessier, D. Reznick, L. Nunney, A. Tessier, D. Reznick, L. Nunney & A. Tessier, 2000. Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology & Evolution 15: 421–425.CrossRefGoogle Scholar
  38. Roff, D. A., 2002. Life History Evolution. Sinauer Associates Inc., Sunderland.Google Scholar
  39. Schaible, R., M. Sussman & B. H. Kramer, 2014. Aging and potential for self-renewal: hydra living in the age of aging –a mini-review. Gerontology 60: 548–556.PubMedCrossRefGoogle Scholar
  40. Schuchert, P., 2010. The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Capitata Part 2. Revue suisse de Zoologie 117: 337–555.CrossRefGoogle Scholar
  41. Schwentner, M. & T. C. G. Bosch, 2015. Revisiting the age, evolutionary history and species level diversity of the genus Hydra (Cnidaria: Hydrozoa). Molecular Phylogenetics and Evolution 91: 41–55.PubMedCrossRefGoogle Scholar
  42. Speakman, J. R. & M. Garratt, 2014. Oxidative stress as a cost of reproduction: beyond the simplistic trade-off model. BioEssays 36: 93–106.PubMedCrossRefGoogle Scholar
  43. Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.Google Scholar
  44. Tessier, A. J., M. A. Leibold & J. Tsao, 2000. A fundamental trade-off in resource exploitation by Daphnia and consequences to plankton communities. Ecology 81: 826–841.CrossRefGoogle Scholar
  45. Tökölyi, J., M. E. Rosa, F. Bradács & Z. Barta, 2014. Life history trade-offs and stress tolerance in green hydra (Hydra viridissima Pallas 1766): the importance of nutritional status and perceived population density. Ecological Research 29: 867–876.CrossRefGoogle Scholar
  46. Tomczyk, S., K. Fischer, S. Austad & B. Galliot, 2015. Hydra, a powerful model for aging studies. Invertebrate Reproduction & Development 59: 11–16.CrossRefGoogle Scholar
  47. Turrens, J. F., 2003. Mitochondrial formation of reactive oxygen species. The Journal of Physiology 552: 335–344.PubMedPubMedCentralCrossRefGoogle Scholar
  48. van Noordwijk, A. J. & G. de Jong, 1986. Acquisition and allocation of resources: their influence on variation in life history tactics. The American Naturalist 128: 137–142.CrossRefGoogle Scholar
  49. Yoshida, K., T. Fujisawa, J. S. Hwang, K. Ikeo & T. Gojobori, 2006. Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging. Gene 385: 64–70.PubMedCrossRefGoogle Scholar
  50. Zera, A. J. & L. G. Harshman, 2001. The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics 32: 95–126.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jácint Tökölyi
    • 1
  • Flóra Bradács
    • 1
  • Nikolett Hóka
    • 1
  • Noémi Kozma
    • 1
  • Máté Miklós
    • 1
  • Orsolya Mucza
    • 1
  • Kinga Lénárt
    • 1
  • Zsófia Ősz
    • 1
  • Flóra Sebestyén
    • 1
  • Zoltán Barta
    • 1
  1. 1.MTA-DE “Lendület” Behavioural Ecology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary

Personalised recommendations