, Volume 761, Issue 1, pp 181–194 | Cite as

Cell size and other phenotypic traits of prokaryotic cells in pelagic areas of the Ross Sea (Antarctica)

  • Rosabruna La Ferla
  • Giovanna Maimone
  • Angelina Lo Giudice
  • Filippo Azzaro
  • Alessandro Cosenza
  • Maurizio Azzaro


We test the suitability of microbial parameters to assess environmental pressures, and investigate the abundance and phenotypic traits of prokaryotic cells in an Antarctic area. During two oceanographic cruises, carried out in 2001 and 2005, seawater samples were collected in two mooring stations of the Ross Sea. As ancillary parameters, determinations of lipopolysaccharides, chlorophyll a, and/or fractionated adenosine-tri-phosphate were done. Furthermore, in the 2005 survey, six more stations were sampled. Results show that prokaryotic cells—in terms of abundance, shape, and size—change in relation with environmental changes. Prokaryotic abundance was high, where a strong condition of eutrophication was detected. Sizes of cells showed the prevalence of very small forms (>0.1 μm3), but larger morphotypes were observed in high trophic conditions (till 0.4 μm3). In Antarctic marine systems, such prokaryotic parameters can be used to evaluate environment status.


Prokaryotic sizes Cell morphology Biomass Image analysis Ross Sea Antarctica 



The research was done in the frame of BIOSESO II and ABIOCLEAR projects funded by the Italian PNRA (National Programme of Antarctic Research). The authors wish to thank two anonymous reviewers and editors for their useful comments as well as the CEFA project of PNRA for the technical support. They also thank the colleagues of IAMC, Dr. Gabriella Caruso and Dr. Giuseppe Frisone, for statistics elaboration and data typing, respectively.

Supplementary material

10750_2015_2426_MOESM1_ESM.tif (696 kb)
Fig. 1 Distributions of the total LPS concentrations in the photic and aphotic layers in the stations sampled in the 2001 and 2005 cruises
10750_2015_2426_MOESM2_ESM.tif (664 kb)
Fig. 2 Vertical profile of the total ATP concentrations in the stations sampled in the 2001 cruise
10750_2015_2426_MOESM3_ESM.tif (990 kb)
Fig. 3 Chla distribution in the quadrangle bounded by the stations A, H1, B and D
10750_2015_2426_MOESM4_ESM.doc (24 kb)
Supplementary material 4 (DOC 24 kb)


  1. Albright, L. J. & S. K. McCrae, 1987. Annual cycle of bacterial specific biovolumes in howe sound, a canadian west coast fjord sound. Applied Environmental Microbiology 53: 2739–2744.PubMedCentralPubMedGoogle Scholar
  2. Azzaro, M., R. La Ferla, G. Maimone, L. S. Monticelli, R. Zaccone & G. Civitarese, 2012. Prokaryotic dynamics and heterotrophic metabolism in a deep convection site of Eastern Mediterranean Sea (the Southern Adriatic Pit). Continental Shelf Research 44: 106–118.CrossRefGoogle Scholar
  3. Barnett, M. J., J. L. Wadham, M. Jackson & D. C. Cullen, 2012. In-field implementation of a recombinant factor C assay for the detection of lipopolysaccharide as a biomarker of extant life within glacial environments. Biosensors 2: 83–100.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bölter, M., J. Bloem, K. Meiners & R. Möller, 2002. Enumeration and biovolume determination of microbial cells—a methodological review and recommendations for applications in ecological research. Biology and Fertility of Soils 36: 249–259.CrossRefGoogle Scholar
  5. Buitenhuis, E. T., W. K. W. Li, M. W. Lomas, D. M. Karl, M. R. Landry & S. Jacquet, 2012. Bacterial biomass distribution in the global ocean. Earth System Science Data Discussion 5: 301–315.CrossRefGoogle Scholar
  6. Catalano, G., G. Budillon, R. La Ferla, P. Povero, M. Ravaioli, V. Saggiomo, A. Accornero, M. Azzaro, G. C. Carrada, F. Giglio, L. Langone, O. Mangoni, C. Misic & M. Modigh, 2006. A global budget of carbon and nitrogen in the Ross Sea (Southern Ocean). In Liu, K. K., L. Atkinson, R. Quiñones & L. Talaue-McManus (eds), Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis, Global Change, The IGBP Series. Springer, Berlin.Google Scholar
  7. Celussi, M., B. Cataletto, S. Fonda Umani & P. Del Negro, 2009. Depth profiles of bacterioplankton assemblages and their activities in the Ross Sea. Deep-Sea Research I 56: 2193–2205.CrossRefGoogle Scholar
  8. Church, M. J., E. F. De Long, H. W. Ducklow, M. B. Karner, C. M. Preston & D. M. Karl, 2003. Abundance and distribution of planktonic archaea and bacteria in the waters west of the Antarctic Peninsula. Limnology Oceanography 48: 1893–1902.CrossRefGoogle Scholar
  9. Cottrel, M. T. & D. L. Kirchman, 2004. Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquatic Microbial Ecology 34: 139–149.CrossRefGoogle Scholar
  10. Crisafi, E., F. Azzaro, R. La Ferla & L. S. Monticelli, 2000. Microbial biomass and respiratory activity related to the ice-melting upper layers in the Ross Sea (Antarctica). In Faranda, F. M., L. Guglielmo & A. Ianora (eds.), The Ross Sea Ecology. Springer, New York.Google Scholar
  11. Delille, D., 2004. Abundance and function of bacteria in the Southern Ocean. Cellular and Molecular Biology 50: 543–551.PubMedGoogle Scholar
  12. Ducklow, H., C. Carlson, M. Church, D. Kirickman, D. Smith & G. Steward, 2001. The seasonal development of the bacterioplankton bloom in the Ross Sea, Antarctica, 1994–1997. Deep-Sea Research II 48: 4199–4221.CrossRefGoogle Scholar
  13. Duda, V. I., N. E. Suzina, V. N. Polivtseva & A. M. Boronin, 2012. Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology. Microbiology 81: 379–390.CrossRefGoogle Scholar
  14. Fonda Umani, S., A. Accornero, G. Budillon, M. Capello, S. Tucci, M. Cabrini, P. Del Negro, M. Monti & C. De Vittor, 2002. Particulate matter and plankton dynamics in the Ross Sea polynya of Terra Nova Bay during the austral summer 1997/98. Journal Marine Systems 36: 29–49.CrossRefGoogle Scholar
  15. Gradinger, R. & Q. Zhang, 1997. Vertical distribution of bacteria in Arctic sea ice from the Barents and Laptev seas. Polar Biology 17: 448–454.CrossRefGoogle Scholar
  16. Holm-Hansen, O. & H. W. Paerl, 1972. The applicability of ATP determination fro estimation of microbial biomass and metabolic activity. Memorie dell’Istituto Italiano di Idrobiologia 29: 149–168.Google Scholar
  17. Karl, D. M., 1980. Cellular nucleotide measurements and applications in microbial ecology. Microbiological Review 44(4): 739–796.Google Scholar
  18. Karl, D. M. & G. Tien, 1991. Bacterial abundances during the 1989–90 austral summer phytoplankton bloom in the Gerlache Strait. Antarctic Journal of the United States 26: 147–149.Google Scholar
  19. Karl, D. M., O. Holm-Hansen, G. T. Taylor, G. Tien & D. F. Bird, 1991. Microbial biomass and productivity in the western Bransfield Strait, Antarctica during the 1986–87 austral summer. Deep-Sea Research 38: 1029–1055.CrossRefGoogle Scholar
  20. Karl, D. M., D. F. Bird, K. Björkman, T. Houlikan, R. Shackelford & L. Tupas, 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286: 2144–2147.CrossRefPubMedGoogle Scholar
  21. Kuhn, E., A. S. Ichimura, V. Peng, C. H. Fritsen, G. Trubl, P. T. Doran & A. E. Murray, 2014. Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida, Antarctica. Applied Environmental Microbiology 80: 3687–3698.PubMedCentralCrossRefPubMedGoogle Scholar
  22. La Ferla, R., A. Allegra, F. Azzaro, S. Greco & E. Crisafi, 1995. Observations on the microbial biomass in two stations of Terra Nova Bay (Antarctica) by ATP and LPS measurements. Marine Ecology 16: 307–315.CrossRefGoogle Scholar
  23. La Ferla, R, F. Azzaro, M. Azzaro, G. Maimone & L. S. Monticelli, 2008. Variability of the microbial biomass and activity in the Ross Sea (Antarctica) and its implication on ecosystem carbon cycle. Geophysical Research Abstract 10, EGU2008-A-0000-EGU General Assembly 2008.Google Scholar
  24. La Ferla, R., M. Azzaro, G. Budillon, C. Caroppo, F. Decembrini & G. Maimone, 2010. Distribution of the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005). Advances in Oceanography and Limnology 2: 235–257.CrossRefGoogle Scholar
  25. La Ferla, R., G. Maimone, M. Azzaro, F. Conversano, C. Brunet, A. S. Cabral & R. Paranhos, 2012. Vertical distribution of the prokaryotic cell size in the Mediterranean Sea. Helgoland Marine Research 66: 635–650.CrossRefGoogle Scholar
  26. La Ferla, R., G. Maimone, G. Caruso, F. Azzaro, M. Azzaro, F. Decembrini, A. Cosenza, M. Leonardi & R. Paranhos, 2014. Are prokaryotic cell shape and size suitable to ecosystem characterization? Hydrobiologia 726: 65–80.CrossRefGoogle Scholar
  27. Langone, L., M. Frignani, M. Ravaioli & C. Bianchi, 2000. Particle fluxes and biogeochemical processes in an area influenced by seasonal retreat of the ice margin (northwestern Ross Sea, Antarctica). Journal Marine Systems 27: 221–234.CrossRefGoogle Scholar
  28. Lazzara, L., F. Bianchi, M. Falcucci, V. Hull, M. Modigh & M. Ribera D’Alcalà, 1990. Pigmenti clorofilliani. Nova Thalassia 11: 207–223.Google Scholar
  29. Lee, S. & A. Fuhrman, 1987. Relationship between biovolume and biomass of naturally derived bacterioplankton. Applied Environmental Microbiology 53: 1298–1303.PubMedCentralPubMedGoogle Scholar
  30. Lo Giudice, A., C. Caruso, S. Mangano, V. Bruni, M. De Domenico & L. Michaud, 2012. Marine bacterioplankton diversity and community composition in an Antarctic coastal environment. Microbial Ecology 63: 210–223.CrossRefPubMedGoogle Scholar
  31. Mangoni, O., M. Modigh, F. Conversano, G. C. Carrada & V. Saggiomo, 2004. Effects of summer ice coverage on phytoplankton assemblages in the Ross Sea, Antarctica. Deep-Sea Research I 51: 1601–1617.CrossRefGoogle Scholar
  32. Margesin, R. & V. Miteva, 2011. Diversity and ecology of psychrophilic microorganisms. Research in Microbiology 162: 346–361.CrossRefPubMedGoogle Scholar
  33. Monticelli, L. S., R. La Ferla & G. Maimone, 2003. Dynamics of bacterioplankton activities after a summer phytoplankton bloom period in Terra Nova Bay. Antarctic Science 15(1): 85–93.Google Scholar
  34. Nelson, D. M., D. J. De Master, R. B. Dunbar & W. O. Jr Smith, 1996. Cycling of organic carbon and biogenic silica in the Southern Ocean: estimates of water column and sedimentary fluxes on the Ross Sea continental shelf. Journal Geophysical Research 101: 519–532.Google Scholar
  35. Newton, R. J., S. E. Jones, A. Eiler, K. D. McMahon & S. Bertilsson, 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 1: 14–49.CrossRefGoogle Scholar
  36. Pernthaler, J. & R. Amann, 2005. Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiology and Molecular Biology Review 6: 440–461.CrossRefGoogle Scholar
  37. Posch, T., M. Loferer-Krößbacher, G. Gao, A. Alfreider, J. Pernthaler & R. Psenner, 2001. Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquatic Microbial Ecology 25: 55–63.CrossRefGoogle Scholar
  38. Posch, T., J. Franzoi, M. Prader & M. M. Salcher, 2009. New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquatic Microbial Ecology 54: 113–126.CrossRefGoogle Scholar
  39. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.CrossRefGoogle Scholar
  40. Smith Jr., W. O., D. J. Ainley & R. Cattaneo-Vietti, 2007. Trophic interactions within the Ross Sea continental shelf ecosystem. Philosophical Transactions of the Royal Society B 362: 95–111.CrossRefGoogle Scholar
  41. Stewart, F. J. & C. H. Fritsen, 2004. Bacteria-algae relationships in Antarctic sea ice. Antarctic Science 16: 143–156.CrossRefGoogle Scholar
  42. Straza, T. R. A., M. T. Cottrell, H. W. Ducklow & D. L. Kirchman, 2009. Geographic and phylogenetic variation in bacterial biovolume as revealed by protein and nucleic acid staining. Applied Environmental Microbiology 75: 4028–4034.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Vichi, M., A. Coluccelli, M. Ravaioli, F. Giglio, L. Langone, M. Azzaro, F. Azzaro, R. La Ferla, G. Catalano & S. Cozzi, 2009. Modelling approach to the assessment of biogenic fluxes at a selected Ross Sea site, Antarctica. Ocean Science Discussions 6: 1477–1512.CrossRefGoogle Scholar
  44. Vrede, K., M. Heldal, S. Norland & G. Bratbak, 2002. Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Applied Environmental Microbiology 68: 2965–2971.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Weinbauer, M. G., 2004. Ecology of prokaryotic viruses. FEMS Microbiology Reviews 28: 127–181.CrossRefPubMedGoogle Scholar
  46. Young, K. D., 2007. Bacterial morphology: why have different shapes? Current Opinion in Microbiology 10: 596–600.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Zeder, M., E. Kohler, L. Zeder & J. Pernthaler, 2011. A novel algorithm for the determination of bacterial cell volumes that is unbiased by cell morphology. Microscopy and Microanalysis 17: 799–809.CrossRefPubMedGoogle Scholar
  48. Żmuda, M., 2005. Abundance and morphotype diversity of surface bacterioplankton along the Gdynia-Brest transect. Oceanological and Hydrobiological Studies 34: 3–17.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rosabruna La Ferla
    • 1
  • Giovanna Maimone
    • 1
  • Angelina Lo Giudice
    • 1
  • Filippo Azzaro
    • 1
  • Alessandro Cosenza
    • 1
  • Maurizio Azzaro
    • 1
  1. 1.Institute for Coastal Marine Environment (IAMC-CNR), Section of MessinaMessinaItaly

Personalised recommendations