, Volume 765, Issue 1, pp 15–26 | Cite as

Different hydrodynamic conditions on the deposition of organic carbon in sediment of two reservoirs

  • Zhao Luo
  • Ji-Ming Ma
  • Shuang-Ling Zheng
  • Chun-Zi Nan
  • Lin-Mei Nie
Primary Research Paper


In regulated freshwater ecosystems, the deposition process of organic carbon (OC) in sediment could be affected by all the changes of physical, chemical, and biological factors. To assess different hydrodynamic conditions on the deposition of OC in sediment, the combination of elemental and stable isotope analyses was carried out in two reservoirs: the Huairou Reservoir (HR), which undergoes seasonal water level fluctuation (WLF) like natural lakes, and the Shisanling Reservoir (SR), which undergoes daily WLF for the operation of pumped storage power station. In general, OC concentration and its variation were comparable in the two reservoirs, whereas the OC distribution showed completely different features. The OC burial rate in SR was nearly two times more than in the HR, which reflect the impact of WLFs on the erosion of soil. For the relative contribution of phytoplankton-derived OC (P-OC), macrophyte-derived OC (M-OC), and terrestrial OC (T-OC) in sediment, the T-OC and M-OC in the SR were both higher than those of the HR, whereas the P-OC was markedly lower. Furthermore, the classification of nearshore and offshore sediments suggested that hydrodynamic conditions affected the T-OC import by physical processes and the in situ contributions of P-OC and M-OC with a spatial difference.


Hydrodynamic condition Mixing model Sedimentary organic carbon Stable isotope Water level fluctuation 



This work was supported by the State key Laboratory of Hydroscience and Engineering under Grant No. 2012-ky-1. Laboratory measurements for the elemental and stable isotope analyses were carried out in the School of Environment, Tsinghua University. The authors are very grateful to the authorities of Huairou Reservoir and Shisanling Reservoir for providing data, as well as those who helped with the numerous assistant projects during the sampling campaigns.

Supplementary material

10750_2015_2410_MOESM1_ESM.docx (474 kb)
Supplementary material 1 (DOCX 474 kb)


  1. Brenner, M., L. W. Keenan, S. J. Miller & C. L. Schelske, 1998. Spatial and temporal patterns of sediment and nutrient accumulation in shallow lakes of the Upper St. Johns River Basin, Florida. Wetlands Ecology and Management 6(4): 221–240.CrossRefGoogle Scholar
  2. Chen, Y., 2008. Studies on hydrophytes diversity of wetland in Beijing. Dissertation, Beijing Forestry University. (in Chinese).Google Scholar
  3. Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.CrossRefGoogle Scholar
  4. Collister, J. W., G. Rieley, B. Stern, G. Eglinton & B. Fry, 1994. Compound-specific delta-c-13 analyses of leaf lipids from plants with differing carbon-dioxide metabolisms. Organic Geochemistry 21: 619–627.CrossRefGoogle Scholar
  5. Dean, W. E. & E. Gorham, 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26: 535–538.CrossRefGoogle Scholar
  6. Downing, J. A., J. J. Cole, J. J. Middelburg, R. G. Striegl, C. M. Duarte, P. Kortelainen, Y. T. Prairie & K. A. Laube, 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles 22: GB1018. doi: 10.1029/2006GB002854.CrossRefGoogle Scholar
  7. Dubois, S., N. Savoye, A. Gremare, M. Plus, K. Charlier, A. Beltoise & H. Blanchet, 2012. Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: An elemental and isotopic study at the ecosystem space scale. Journal of Marine Systems 94: 64–73.CrossRefGoogle Scholar
  8. Einsele, G., J. P. Yan & M. Hinderer, 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Global and Planetary Change 30: 167–195.CrossRefGoogle Scholar
  9. Furey, P. C., R. N. Nordin & A. Mazumder, 2004. Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake and Reservoir Management 20: 280–295.CrossRefGoogle Scholar
  10. Gudasz, C., D. Bastviken, K. Steger, K. Premke, S. Sobek & L. J. Tranvik, 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466: 478–481.CrossRefPubMedGoogle Scholar
  11. Gui, Z. F., B. Xue, S. C. Yao, W. J. Wei & S. Yi, 2013. Organic carbon burial in lake sediments in the middle and lower reaches of the Yangtze River Basin, China. Hydrobiologia 710: 143–156.CrossRefGoogle Scholar
  12. Hartnett, H. E., R. G. Keil, J. I. Hedges & A. H. Devol, 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391: 572–574.CrossRefGoogle Scholar
  13. Hulthe, G., S. Hulth & P. Hall, 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochimica et Cosmochimica Acta 62: 1319–1328.CrossRefGoogle Scholar
  14. Hyne, N. J., 1978. Distribution and source of organic-matter in reservoir sediments. Environmental Geology 2: 279–287.CrossRefGoogle Scholar
  15. IPCC, 2007. Climate change 2007: the physical science basis. Contribution of Working of Shop Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
  16. Kendall, C., S. R. Silva & V. J. Kelly, 2001. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes 15: 1301–1346.CrossRefGoogle Scholar
  17. Kikuchi, E. & E. Wada, 1996. Carbon and nitrogen stable isotope ratios of deposit-feeding polychaetes in the Nanakita River Estuary, Japan. Hydrobiologia 321: 69–75.CrossRefGoogle Scholar
  18. Leira, M. & M. Cantonati, 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184.CrossRefGoogle Scholar
  19. Li, Z., S. Wang, J. Guo, F. Fang, X. Gao & M. Long, 2012. Responses of phytoplankton diversity to physical disturbance under manual operation in a large reservoir, China. Hydrobiologia 684: 45–56.CrossRefGoogle Scholar
  20. Lu, F. Y., Z. Q. Liu & H. B. Ji, 2012. Carbon and nitrogen isotopes analysis and sources of organic matter in the upper reaches of the Chaobai River near Beijing, China. Science China: Earth Sciences 12: 1912–1922. (in Chinese).Google Scholar
  21. Maki, K., C. Kim, C. Yoshimizu, I. Tayasu, T. Miyajima & T. Nagata, 2010. Autochthonous origin of semi-labile dissolved organic carbon in a large monomictic lake, Lake Biwa.: Carbon stable isotopic evidence. Limnology 11: 143–153.CrossRefGoogle Scholar
  22. Manning, A. J., W. J. Langston & P. J. C. Jonas, 2010. A review of sediment dynamics in the Severn Estuary: Influence of flocculation. Marine Pollution Bulletin 61: 37–51.CrossRefPubMedGoogle Scholar
  23. Meyers, P. A. & R. Ishiwatari, 1993. Lacustrine organic geochemistry – an overview of indicators of organic-matter sources and diagenesis in lake-sediments. Organic Geochemistry 20: 867–900.CrossRefGoogle Scholar
  24. Mulholland, P. J. & J. W. Elwood, 1982. The role of lake and reservoir sediments as sinks in the perturbed global carbon-cycle. Tellus 34: 490–499.CrossRefGoogle Scholar
  25. Murase, J. & M. Sakamoto, 2000. Horizontal distribution of carbon and nitrogen and their isotopic compositions in the surface sediment of Lake Biwa. Limnology 1: 177–184.CrossRefGoogle Scholar
  26. Park, H. K., M. S. Byeon, Y. N. Shin & D. I. Jung, 2009. Sources and spatial and temporal characteristics of organic carbon in two large reservoirs with contrasting hydrologic characteristics. Water Resources Research 45: W11418.CrossRefGoogle Scholar
  27. Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.CrossRefPubMedGoogle Scholar
  28. Pittman, B., J. R. Jones, J. J. Millspaugh, R. J. Kremer & J. A. Downing, 2013. Sediment organic carbon distribution in 4 small northern Missouri impoundments: implications for sampling and carbon sequestration. Inland Waters 3: 39–46.CrossRefGoogle Scholar
  29. Ritchie, J. C., 1989. Carbon content of sediments of small reservoirs. Water Resources Bulletin 25: 301–308.CrossRefGoogle Scholar
  30. Sakai, Y., Z. Karube, T. Takeyama, A. Kohzu, C. Yoshimizu, T. Nagata, I. Tayasu & N. Okuda, 2013. Seasonal and site-specific variability in terrigenous particulate organic carbon concentration in near-shore waters of Lake Biwa, Japan. Limnology 14: 167–177.CrossRefGoogle Scholar
  31. Sfriso, A., F. Massimiliano, C. Sonia, C. Facca & M. Antonio, 2005. Organic carbon changes in the surface sediments of the Venice lagoon. Environment International 31: 1002–1010.CrossRefPubMedGoogle Scholar
  32. Sobek, S., E. Durisch-Kaiser, R. Zurbruegg, N. Wongfun, M. Wessels, N. Pasche & B. Wehrli, 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology and Oceanography 54: 2243–2254.CrossRefGoogle Scholar
  33. Sweerts, J., M. J. Bargilissen, A. A. Cornelese & T. E. Cappenberg, 1991. Oxygen-consuming processes at the profundal and littoral sediment water interface of a small meso-eutrophic lake, Lake Vechten, the Netherlands. Limnology and Oceanography 36: 1124–1133.CrossRefGoogle Scholar
  34. Tabosa, A. B., L. Q. Matias & F. R. Martins, 2012. Live fast and die young: the aquatic macrophyte dynamics in a temporary pool in the Brazilian semiarid region. Aquatic Botany 102: 71–78.CrossRefGoogle Scholar
  35. Tenzer, G. E., P. A. Meyers & P. Knoop, 1997. Sources and distribution of organic and carbonate carbon in surface sediments of Pyramid Lake, Nevada. Journal of Sedimentary Research 67: 884–890.Google Scholar
  36. Thothong, W., S. Huon, J. Janeau, A. Boonsaner, A. de Rouw, O. Planchon, G. Bardoux & P. Parkpian, 2011. Impact of land use change and rainfall on sediment and carbon accumulation in a water reservoir of North Thailand. Agriculture Ecosystems & Environment 140: 521–533.CrossRefGoogle Scholar
  37. Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt & G. A. Weyhenmeyer, 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.CrossRefGoogle Scholar
  38. Unger, I. M., A. C. Kennedy & R. Muzika, 2009. Flooding effects on soil microbial communities. Applied Soil Ecology 42: 1–8.CrossRefGoogle Scholar
  39. Viner, A. B., 1989. Distribution of carbon, nitrogen, and phosphorus in Lake Taupo surface sediment. New Zealand Journal of Marine Freshwater Research 23: 393–399.CrossRefGoogle Scholar
  40. Wilson, J. S., D. S. Baldwin, G. N. Rees & B. P. Wilson, 2011. The effects of short-term inundation on carbon dynamics, microbial community structure and microbial activity in floodplain soil. River Research and Applications 27: 213–225.CrossRefGoogle Scholar
  41. Xing, G. H., 2011. Research on Huairou Reservoir watershed runoff and future water resources management. China Flood & Drought Management 21(S1): 40–42. (in Chinese).Google Scholar
  42. Zhang, N., X. J. Chen, G. S. Du & Z. F. Huang, 2012. Planktonic algae and trophic state in Huairou Reservoir in Beijing City. Water Resources Protection. 28: 55–58. (in Chinese).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zhao Luo
    • 1
  • Ji-Ming Ma
    • 1
  • Shuang-Ling Zheng
    • 1
  • Chun-Zi Nan
    • 1
  • Lin-Mei Nie
    • 2
  1. 1.The State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic EngineeringTsinghua UniversityBeijingChina
  2. 2.SINTEF Building and InfrastructureOsloNorway

Personalised recommendations