, Volume 765, Issue 1, pp 115–129 | Cite as

Cyanobacteria are controlled by omnivorous filter-feeding fish (Nile tilapia) in a tropical eutrophic reservoir

  • Gian Salazar Torres
  • Lúcia H. S. Silva
  • Luciana M. Rangel
  • José Luiz Attayde
  • Vera L. M. Huszar
Primary Research Paper


Omnivorous filter-feeding fish are common in tropical lakes and reservoirs, and can potentially reduce phytoplankton biomass in eutrophic systems. The goal of this study was to evaluate direct grazing or indirect increase in phytoplankton biomass through the trophic cascade and fish-mediated nutrient recycling produced by Nile tilapia. Natural phytoplankton assemblages were incubated in permeable chambers placed inside mesocosms with and without fish. Outside these chambers (mesocosms), phytoplankton was exposed to effects from nutrient recycling by zooplankton and fish, and to grazing by these consumers. Inside the permeable chambers, phytoplankton was exposed only to nutrient recycling by zooplankton and fish. Our results showed that in mesocosms, cyanobacteria biomass was significantly reduced by fish; water transparency and ammonium concentrations also increased, but did not affect soluble reactive phosphorus concentrations or zooplankton biomass. Fish-mediated nutrient recycling did not enhance phytoplankton growth inside permeable chambers, because phytoplankton growth was limited in this study by phosphorus availability. The estimated grazing rates showed that tilapia were able to reduce approximately 60% of phytoplankton biomass (mostly cyanobacteria). Our data indicated that fish grazing was the mechanism controlling cyanobacteria biomass. This study provides evidence that Oreochromis niloticus has the potential to reduce cyanobacteria community in eutrophic reservoirs.


Top-down and bottom-up controls Direct and indirect effects Trophic interactions, eutrophication and biomanipulation 



The authors are grateful to the two anonymous referees for their constructive and detailed comments, and to Dr. Janet W. Reid (JWR Associates) for editing the English text. This study was conducted under the auspices of CAPES (Brasil)/Wageningen University (The Netherlands) (Project 004/2008), and the Peru–Brazil Scholarship Students CNPq-PEC-PG Agreement (190019/2010-7). VH was partially supported by the CNPq, Brazil (309700/2013-2).


  1. Arcifa, M. S. & W. Guagnoni, 2003. A new model of enclosure for experiments in lentic water. Acta Limnologica Brasiliensia 15: 75–79.Google Scholar
  2. Attayde, J. L. & L. A. Hansson, 2001a. Fish-mediated nutrient recycling and the trophic cascade in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1924–1931.CrossRefGoogle Scholar
  3. Attayde, J. L. & L. A. Hansson, 2001b. The relative importance of fish predation and excretion effects on planktonic communities. Limnology and Oceanography 46: 1001–1012.CrossRefGoogle Scholar
  4. Attayde, J. L. & R. F. Menezes, 2008. Effects of fish biomass and planktivore type on plankton communities. Journal of Plankton Research 30: 885–892.CrossRefGoogle Scholar
  5. Attayde, J. L., N. Okun, J. Brasil, R. Menezes & P. Mesquita, 2007. Impacts of the Nile tilapia (Oreochromis niloticus) introduction on the trophic structure of the aquatic ecosystems of the Caatinga biome. Oecologia Brasiliensis 11: 450–461.CrossRefGoogle Scholar
  6. Attayde, J. L., E. Van Nes, A. I. L. Araujo, G. Corso & M. Scheffer, 2010. Omnivory by planktivores stabilizes plankton dynamics, but may either promote or reduce algal biomass. Ecosystems 13: 885–892.CrossRefGoogle Scholar
  7. Beveridge, M. C. & D. J. Baird, 2000. Diet, feeding and digestive physiology. In Beveridge, M. C. M. & B. J. McAndrew (eds), Tilapias: Biology and Exploitation. Kluwer Academic Publishers, Liege: 59–87.CrossRefGoogle Scholar
  8. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  9. Bouvy, M., S. M. Nascimento, R. J. R. Molica, A. Ferreira, V. L. M. Huszar & S. M. F. O. Azevedo, 2003. Limnological features in Tapacurá reservoir (Northeast Brazil) during a severe drought. Hydrobiologia 493: 115–130.CrossRefGoogle Scholar
  10. Bradley, C. J., J. R. Strickler, E. J. Buskey & P. H. Lenz, 2013. Swimming and escape behavior in two species of calanoid copepods from nauplius to adult. Journal of Plankton Research 35: 49–65.CrossRefGoogle Scholar
  11. Branco, C. W. C., M. I. A. Rocha, G. F. Pinto, G. A. Gômara & R. De Filippo, 2002. Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes & Reservoirs: Research and Management 7: 87–92.CrossRefGoogle Scholar
  12. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  13. Carpenter, S. R. & J. E. Kitchell, 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  14. Conley, D. J., H. W. Pearl, R. W. Howarth, D. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot & G. E. Likens, 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.CrossRefPubMedGoogle Scholar
  15. Danger, M., G. Lacroix, S. Kâ, E. Ndour, D. Corbin & X. Lazzaro, 2009. Food-web structure and functioning of temperate and tropical lakes: a stoichiometric viewpoint. International Journal of Limnology 45: 11–21.CrossRefGoogle Scholar
  16. Datta, S. & B. B. Jana, 1998. Control of bloom in a tropical lake: grazing efficiency of some herbivorous fishes. Journal of Fish Biology 53: 12–24.CrossRefGoogle Scholar
  17. De Silva, S. S. & T. A. Anderson, 1995. Fish Nutrition in Aquaculture. Chapman and Hall, London.Google Scholar
  18. Drenner, R. W., W. J. O’Brien & J. R. Mummert, 1982. Filter-feeding rates of gizzard shad. Transactions of the American Fisheries Society 111: 210–215.CrossRefGoogle Scholar
  19. Drenner, R. W., J. D. Smith & S. T. Threlkeld, 1996. Lake trophic state and the limnological effects of omnivorous fish. Hydrobiologia 319: 213–223.CrossRefGoogle Scholar
  20. Drenner, R. W., K. L. Gallo, R. M. Baca & S. Durward, 1998. Synergistic effects of nutrient loading and omnivorous fish on phytoplankton biomass. Canadian Journal of Fisheries and Aquatic Sciences 55: 2087–2096.CrossRefGoogle Scholar
  21. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in selection of Cladocera, Copepoda, and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefGoogle Scholar
  22. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.CrossRefGoogle Scholar
  23. Ferrão-Filho, A., R. Cunha, V. F. Magalhães, M. C. Soares & D. F. Baptista, 2007. Evaluation of sub-lethal toxicity of cyanobacteria on the swimming activity of aquatic organisms by image analysis. Journal of the Brazilian Society of Ecotoxicology 2: 1–8.CrossRefGoogle Scholar
  24. Figueredo, C. C. & A. Giani, 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology 50: 1391–1403.CrossRefGoogle Scholar
  25. Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world freshwater cladocerans. Limnology and Oceanography 45: 22–30.CrossRefGoogle Scholar
  26. Hambright, K. D., S. C. Blumenshine & J. Shapiro, 2002. Can filter-feeding fishes improve water quality in lakes? Freshwater Biology 47: 1173–1182.CrossRefGoogle Scholar
  27. Hillebrand, H., C. L. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 408–424.CrossRefGoogle Scholar
  28. Huisman, J., H. Matthijs & P. Visser, 2005. Harmful Cyanobacteria. Aquatic Ecology Series. Springer, Dordrecht.CrossRefGoogle Scholar
  29. Huszar, V. L. M., L. H. S. Silva, M. M. Marinho, P. Domingos & C. L. Sant’anna, 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia 424: 67–77.CrossRefGoogle Scholar
  30. James, S. D., Y. Yang & C. Kwei, 2004. Stocking densities and fertilization regimes for Nile Tilapia (Oreochromis niloticus) production in ponds with supplemental feeding. In Proceedings Dimensions on Farmed Tilapia, 6th International Symposium on Tilapia in Aquaculture Philippine International Convention Center Roxas Boulevard, Philippines: 487–499.Google Scholar
  31. Jančula, D., M. Míkovcová, Z. Adámek & B. Maršálek, 2008. Changes in the photosynthetic activity of Microcystis colonies after gut passage through Nile tilapia (Oreochromis niloticus) and silver carp (Hypophthalmichthys molitrix). Aquaculture Research 39: 311–314.CrossRefGoogle Scholar
  32. Jeppesen, E., M. Meerhoff, B. A. Jakobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridesen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.CrossRefGoogle Scholar
  33. Kiørboe, T., 2010. What makes pelagic copepods so successful? Journal of Plankton Research 33: 677–685.CrossRefGoogle Scholar
  34. Kosten, S., V. L. M. Huszar, E. Cares, L. Costa, L. Van Donk, L. A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lürling, T. Nõges, S. Romo & M. Scheffer, 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.CrossRefGoogle Scholar
  35. Kottek, M., J. Grieser, C. Beck, B. Rudolf & F. Rubel, 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259–263.CrossRefGoogle Scholar
  36. Lacerot, G. L., C. Kruk, M. Lürling & M. Scheffer, 2013. The role of subtropical zooplankton grazers of phytoplankton under different predation levels. Freshwater Biology 58: 494–503.CrossRefGoogle Scholar
  37. Lazzaro, X., 1987. A review of planktivorous fishes: their evolution, feeding, behaviours, selectivities, and impacts. Hydrobiologia 146: 97–167.CrossRefGoogle Scholar
  38. Lazzaro, X., 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 26: 719–730.Google Scholar
  39. Lovell, T., 1998. Nutrition and Feeding of Fish, 2nd ed. Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
  40. Loverde-Oliveira, S., V. L. M. Huszar, N. Mazzeo & M. Scheffer, 2009. Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems 12: 807–819.CrossRefGoogle Scholar
  41. Lu, K., C. Jin, S. Dong, B. Gu & S. Bowen, 2006. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hydrobiologia 568: 111–120.CrossRefGoogle Scholar
  42. Lund, J. W. G., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  43. Menezes, R. F., J. L. Attayde & F. R. Vasconcelos, 2010. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshwater Biology 55: 767–779.CrossRefGoogle Scholar
  44. Moriarty, D. J. W., 1973. The physiology of digestion of blue green algae in the cichlid fish, Tilapia nilotica. Journal of Zoology 171: 25–39.CrossRefGoogle Scholar
  45. Morrison, C. M. & J. R. Wright, 1999. A study of the histology of the digestive tract of the Nile tilapia. Journal of Fish Biology 54: 597–606.CrossRefGoogle Scholar
  46. O’Neil, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.CrossRefGoogle Scholar
  47. Okun, N., J. Brasil, J. L. Attayde & I. Costa, 2008. Omnivory does not prevent trophic cascade in pelagic food webs. Freshwater Biology 53: 129–138.Google Scholar
  48. Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.CrossRefPubMedGoogle Scholar
  49. Panosso, R., P. Carlsson, B. Kozlowsky-Suzuki, M. F. O. Azevedo & E. Granéli, 2003. Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. Journal of Plankton Research 25: 1169–1175.CrossRefGoogle Scholar
  50. Rangel, L. M., P. Rosa, F. Roland, L. H. S. Silva & V. L. M. Huszar, 2012. Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693: 13–28.CrossRefGoogle Scholar
  51. Rangel, L.M., 2014. Florações de cianobactérias no Reservatório do Funil: antigo problema, novas questões e perspectivas. PhD Thesis. Universidade Federal do Rio de Janeiro.Google Scholar
  52. Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf/Luhe.Google Scholar
  53. Rocha, M. I. A., C. W. C. Branco, G. F. Sampaio, G. A. Gômara & R. De Filippo, 2002. Spatial and temporal variation of limnological features, Microcystis aeruginosa and zooplankton in a eutrophic reservoir (Funil Reservoir, Rio de Janeiro). Acta Limnologica Brasiliensia 14: 73–86.Google Scholar
  54. Rondel, C., R. Arfi, D. Corbin, F. Le Bihan, E. Indour & X. Lazzaro, 2008. A cyanobacterial bloom prevents fish trophic cascades. Freshwater Biology 53: 637–651.CrossRefGoogle Scholar
  55. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of plankton rotifers. Archiv fur Hydrobiologie 8: 71–76.Google Scholar
  56. Santos, A. B. I., R. J. Albieri & F. Araújo, 2013. Influences of dams with different levels of river connectivity on the fish community structure along a tropical river in Southeast Brazil. Journal of Applied Ichthyology 29: 163–171.CrossRefGoogle Scholar
  57. Sas, H., 1989. Lake Restoration by Reduction of Nutrient Loading: Expectations, Experiences, Extrapolations. Academia Verlag Richarz, St. Augustin.Google Scholar
  58. Silva, L. H. S., V. L. M. Huszar, M. M. Marinho, L. M. Rangel, J. Brasil, C. D. Domingues, C. C. Branco & F. Roland, 2014a. Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica 48: 1–10.CrossRefGoogle Scholar
  59. Silva, L. H. S., M. S. Arcifa, G. Salazar-Torres & V. L. M. Huszar, 2014b. Tilapia rendalli increases phytoplankton biomass of a shallow tropical lake. Acta Limnologica Brasiliensia 26: 429–441.CrossRefGoogle Scholar
  60. Sieburth, J., V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography 23: 1256–1263.CrossRefGoogle Scholar
  61. Smith, V. & W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24: 201–207.CrossRefPubMedGoogle Scholar
  62. Soares, M. C. S., M. M. Marinho, V. L. M. Huszar, C. W. C. Branco & S. M. F. O. Azevedo, 2008. The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes & Reservoirs: Research and Management 13: 257–269.CrossRefGoogle Scholar
  63. Soares, M. C. S., M. I. A. Rocha, M. M. Marinho, S. M. F. O. Azevedo, C. W. C. Branco & V. L. M. Huszar, 2009. Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquatic Microbial Ecology 57: 137–149.CrossRefGoogle Scholar
  64. Soares, M. C. S., V. L. M. Huszar, M. N. Miranda, M. M. Mello, F. Roland & M. Lürling, 2013. Cyanobacterial dominance in Brazil: distribution and environmental preferences. Hydrobiologia 717: 1–12.CrossRefGoogle Scholar
  65. Starling, F., X. Lazzaro, C. Cavalcanti & R. Moreira, 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshwater Biology 47: 2443–2452.CrossRefGoogle Scholar
  66. Sun, X., M. Tao, B. Qin, M. Qi, Y. Niu & J. Zhang, 2012. Large-scale field evidence on the enhancement of small-sized cladocerans by Microcystis blooms in Lake Taihu, China. Journal of Plankton Research 34: 853–863.CrossRefGoogle Scholar
  67. Terra, B. & F. Araújo, 2011. A preliminary fish assemblage index for a transitional river–reservoir system in southeastern Brazil. Ecological Indicators 11: 874–881.CrossRefGoogle Scholar
  68. Tundisi, J. G., T. Tundisi-Matsumura, T. Sidagis & C. Galli, 2006. Eutrofização na América do Sul: Causas, conseqüências e tecnologias para gerenciamento e controle. Instituto Internacional de Ecologia, ABC, IIE, IANAS, São Carlos.Google Scholar
  69. Turker, H., A. Eversole & D. Brune, 2003a. Filtration of green algae and cyanobacteria by Nile tilapia, Oreochromis niloticus, in the partitioned aquaculture system. Aquaculture 215: 93–101.CrossRefGoogle Scholar
  70. Turker, H., A. Eversole & D. Brune, 2003b. Effect of temperature and phytoplankton concentration on Nile tilapia Oreochromis niloticus (L.) filtration rate. Aquaculture Research 34: 453–459.CrossRefGoogle Scholar
  71. Turker, H., A. Eversole & D. Brune, 2003c. Effect of Nile tilapia, Oreochromis niloticus (L.), size on phytoplankton filtration rate. Aquaculture Research 34: 1087–1091.CrossRefGoogle Scholar
  72. Uhelinger, V., 1964. Étude statistique des méthodes de dénobrement planctonique. Archive des Sciences 17: 121–123.Google Scholar
  73. Utermöhl, H., 1958. Zur Vervolkommung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für Limnologie 9: 1–38.Google Scholar
  74. Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.CrossRefGoogle Scholar
  75. Vanni, M. J., C. D. Layne & S. E. Arnott, 1997. “Top-down” trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology 78: 1–20.Google Scholar
  76. Vieira, J. M. S., M. T. P. Azevedo, S. M. F. O. Azevedo, R. Y. Honda & B. Corrêa, 2005. Toxic cyanobacteria and microcystin concentrations in a public water supply reservoir in the Brazilian Amazonia region. Toxicon 45: 901–909.CrossRefGoogle Scholar
  77. Vörös, L., L. Oldal, M. Présing & V. Balogh, 1997. Size selective filtration and taxon-specific digestion of plankton algae by silver carp (Hypophthalmichthys molitrix Val.). Hydrobiologia 342/343: 223–228.CrossRefGoogle Scholar
  78. Wetzel, R. G. & G. E. Likens, 1990. Limnological Analyses, 2nd ed. Springer, New York.Google Scholar
  79. Zengeya, T. A. & B. E. Marshall, 2007. Trophic interrelationships amongst cichlid fishes in a tropical African reservoir (Lake Chivero, Zimbabwe). Hydrobiologia 592: 175–182.CrossRefGoogle Scholar
  80. Zhang, X., P. Xie, L. Hao, N. C. Guo, Y. G. Gon, X. L. Hu, J. Chen & G. D. Liang, 2006. Effects of the phytoplanktivorous silver carp (Hypophthalmichthy molitrixon) on plankton and the hepatotoxic microcystins in an enclosure experiment in a eutrophic lake, Lake Shichahai in Beijing. Aquaculture 257: 173–186.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gian Salazar Torres
    • 1
  • Lúcia H. S. Silva
    • 1
  • Luciana M. Rangel
    • 1
  • José Luiz Attayde
    • 2
  • Vera L. M. Huszar
    • 1
  1. 1.Departamento de Botânica, Museu NacionalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento de Ecologia, Centro de BiociênciasUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations