, Volume 765, Issue 1, pp 85–96 | Cite as

Measuring the impacts of Roundup Original® on fluctuating asymmetry and mortality in a Neotropical tadpole

  • Renan Nunes Costa
  • Fausto Nomura
Primary Research Paper


Amphibian larvae are highly susceptible to contamination, which can lead to lethal and sublethal effects. This impact can be measured by fluctuating asymmetry (FA), which is based on differences between the sides of organisms with bilateral symmetry. We evaluated the effect of acute and chronic exposure to Roundup Original ® on Physalaemus cuvieri tadpoles. We measured tadpole survival and estimated the LC5096h. We also evaluated whether a sublethal concentration increases the FA. In acute exposure, survival was reduced and the LC50 was 2.13 mg a.i./l. In chronic exposure, nostril–snout distance and eye width had a significantly higher FA in contaminated tadpoles. The chronic exposure to contaminants could lead to several sublethal effects, which would be used in biomonitoring surveys. Morphological traits affected by contaminants, such as malformations or FA, would be relatively more easily measured from field samples. Because it is cost effective, easy to measure, and can be obtained without tagging or housing field-caught animals, we suggest that FA is a promising marker for monitoring the environmental impacts of contaminants like Roundup. However, additional studies are necessary to understand what additional environmental stressors might impact FA, and how this might alter its utility for use in biomonitoring.


Glyphosate Ecomorphology Ecotoxicology Acute exposure Chronic exposure Fluctuating asymmetry 



We are grateful to Girinos do Brasil (SISBIOTA: grants CNPq 563075/2010-4 and FAPESP 2010/52321-7) for the financial support provided to carry out experiments and field sampling. We thank Arthur Bauer, Marcelo Junqueira, and Fernanda Fava for their help in field sampling. We are also grateful to Mirco Solé for the English review and Simone Morais for the laboratory support. Finally, we thank Arthur Bauer and Wanderson de Souza for the logistic support during experimentation.


  1. ABRASCO, 2012. Um alerta sobre os impactos dos agrotóxicos na saúde. Parte 1 – Agrotóxicos, Segurança Alimentar e Nutricional e Saúde. Dossiê ABRASCO, Associação Brasileira de Saúde Coletiva, Rio de Janeiro, RJ.Google Scholar
  2. Alford, R. A., 1999. Ecology: resource use, competition, and predation. In McDiarmid, R. W. & R. Altig (eds), Tadpoles. The Biology of Anuran Larvae. University of Chicago Press, Chicago: 240–278.Google Scholar
  3. Allentoft, M. E. & J. O’Brien, 2010. Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2: 47–71.CrossRefGoogle Scholar
  4. Altig, R. & R. W. McDiarmid, 1999a. Diversity: familial and generic characterizations. In McDiarmid, R. W. & R. Altig (eds), Tadpoles. The Biology of Anuran Larvae. University of Chicago Press, Chicago: 295–337.Google Scholar
  5. Altig, R. & R. W. McDiarmid, 1999b. Body plan: development and morphology. In McDiarmid, R. W. & R. Altig (eds), Tadpoles. The Biology of Anuran Larvae. University of Chicago Press, Chicago: 24–51.Google Scholar
  6. Amarante Jr, O. P., T. C. R. Santos, N. M. Brito & M. L. Ribeiro, 2002. Glifosato: propriedades, usos e legislação. Química Nova 25(4): 589–593.CrossRefGoogle Scholar
  7. Badyaev, A. V., K. R. Foresman & M. V. Fernandes, 2000. Stress and developmental stability: vegetation removal causes increased fluctuating asymmetry in shrews. Ecology 81: 336–345.CrossRefGoogle Scholar
  8. Beasley, D. A. E., A. Bonisoli-Alquati & T. A. Mousseau, 2013. The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis. Ecological Indicators 30: 218–226.CrossRefGoogle Scholar
  9. Blaustein, A. R., 1994. Chicken Little or Nero’s Fiddle? A perspective on declining amphibian populations. Herpetologica 50(1): 85–97.Google Scholar
  10. Blaustein, A. R. & D. B. Wake, 1995. The puzzle of declining amphibian populations. Scientific American 272: 52–57.CrossRefGoogle Scholar
  11. Bliss, C. I., 1935. The calculator of the dosage-mortality curve. Annals of Applied Biology 22: 134–167.CrossRefGoogle Scholar
  12. Boone, M. D., D. Cownan, C. Davidson, T. B. Hayes, W. A. Hopkins, R. A. Relyea, L. Schiesari & R. Semlistch, 2007. Evaluating the role of environmental contamination in amphibian population decline. In Gascon, C., J. P. Collins, R. D. Moore, D. R. Church, J. E. McKay & J. R. Mendelson III (eds), Amphibian Conservation Action Plan. Proceedings: IUCN/SSC Amphibian Conservation Summit 2005. The World Conservation Union (IUCN), Gland: 32–35.Google Scholar
  13. Bortoluzzi, E. C., D. S. Rheinheimer, C. S. Gonçalves, J. B. R. Pellegrini, R. Zanella & A. C. C. Copetti, 2006. Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Revista Brasileira de Engenharia Agrícola e Ambiental 10(4): 881–887.CrossRefGoogle Scholar
  14. Bosch, J. & R. Márquez, 2000. Tympanum fluctuating asymmetry, body size and mate choice in female Midwife Toads (Alytes obstreticans). Behaviour 137: 1211–1222.CrossRefGoogle Scholar
  15. Bridges, C. M., 1997. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl. Environmental Toxicology and Chemistry 19: 1935–1939.CrossRefGoogle Scholar
  16. Bridges, C. M., 1999. Effects of a pesticide on tadpole activity and predator avoidance behavior. Journal of Herpetology 33: 303–306.CrossRefGoogle Scholar
  17. Bridges, C. M., 2000. Long-term effects of pesticide exposure at various life stages of the Southern Leopard frog (Rana sphenocephala). Archives of Environmental Contamination and Toxicology 39: 91–96.CrossRefPubMedGoogle Scholar
  18. Bridges, C. M. & R. D. Semlitsch, 2001. Genetic variation in insecticide tolerance in a population of Southern Leopard Frogs (Rana sphenocephala): implication for amphibian conservation. Copeia 1: 7–13.CrossRefGoogle Scholar
  19. Chang, X., B. Zhai, M. Wang & B. Wang, 2007. Relationship between exposure to an insecticide and fluctuating asymmetry in a damselfly (Odonata, Coenagriidae). Hydrobiologia 586: 213–220.CrossRefGoogle Scholar
  20. Clarke, G. M., 1993. Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality. Environmental Pollution 82: 207–211.CrossRefPubMedGoogle Scholar
  21. Clarke, G. M., 1995. Relationships between developmental stability and fitness: application for conservation biology. Conservation Biology 9(1): 18–24.CrossRefGoogle Scholar
  22. Clay, J., 2004. World Agriculture and the Environment. A Commodity-by-commodity Guide to Impacts and Practices. Island Press, Washington, DC.Google Scholar
  23. CONAMA 357, 2005. Conselho Nacional do Meio Ambiente. Resolução no. 357, de 17 de Março de 2005. Publicada no DOU no. 053, de 18/03/2005: 58–63.Google Scholar
  24. Davidson, C., H. B. Shaffer & M. R. Jennings, 2001. Declines of the California red-legged frog: climate, UV-B, habitat, and pesticides hypotheses. Ecological Applications 14: 464–479.CrossRefGoogle Scholar
  25. Davidson, C., H. B. Shaffer & M. R. Jennings, 2002. Spatial tests of the pesticide drift, habitat destruction, UV-B, and climate-change hypotheses for California amphibian declines. Conservation Biology 16: 1588–1601.CrossRefGoogle Scholar
  26. Delgado-Acevedo, J. & C. Restrepo, 2008. The contribution of habitat loss to changes in body size, allometry, and bilateral asymmetry in two Eleutherodactylus frogs from Puerto Rico. Conservation Biology 22(3): 773–782.CrossRefPubMedGoogle Scholar
  27. Diniz-Filho, J. A. F., L. M. Bini, M. P. Pinto, T. F. L. V. B. Rangel, P. Carvalho, S. L. Vieira & R. P. Bastos, 2007. Conservation biogeography of anurans in Brazilian Cerrado. Biodiversity and Conservation 16: 997–1008.CrossRefGoogle Scholar
  28. Edwards, W. M., G. B. Triplett Jr & R. M. Kramer, 1980. A watershed study of glyphosate transport in runoff. Journal of Environmental Quality 9(4): 661–665.CrossRefGoogle Scholar
  29. Egea-Serrano, A., R. A. Relyea, M. Tejedo & M. Torralva, 2012. Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecology and Evolution 2(7): 1382–1397.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Feng, J. C., D. G. Thompson & P. E. Reynolds, 1990. Fate of glyphosate in a Canadian forest watershed. 1. Aquatic residues and off-target deposit assessment. Journal of Agriculture and Food Chemistry 38: 1110–1118.CrossRefGoogle Scholar
  31. Figueiredo, J. & D. J. Rodrigues, 2014. Effects of four types of pesticides on survival, time and size to metamorphosis of two species of tadpoles (Rhinella marina and Physalaemus centralis) from the southern Amazon, Brazil. Herpetological Journal 24: 1–9.Google Scholar
  32. Fisher, R. A., 1935. Appendix to bliss (1935): the case of zero survivors. Annals of Applied Biology 22: 164–165.Google Scholar
  33. Forbes, M., B. Leung & G. Schalk, 1997. Fluctuating asymmetry in Coenagrion Resolutum (Hagen) in relation to age and male pairing success (Zygoptera: Coenagrionidae). Odonatologica 26: 9–16.Google Scholar
  34. Frost, D. R., 2014. Amphibian Species of the World: An Online Reference, Version 5.6. Accessible at Downloaded on 15 January 2014.
  35. Giesy, J. P., S. Dobson & K. R. Solomon, 2000. Ecotoxicological risk assessment for Roundup® herbicide. Reviews of Environmental Contamination and Toxicology 167: 35–120.Google Scholar
  36. Goldsborough, L. G. & A. E. Beck, 1989. Rapid dissipation of glyphosate in small forest ponds. Archives of Environmental Contamination and Toxicology 18: 537–544.CrossRefGoogle Scholar
  37. Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.Google Scholar
  38. Griffis-Kyle, K. L., 2005. Ontogenetic delays in effects of nitrite exposure on tiger salamanders (Ambystoma tigrinum tigrinum) and wood frogs (Rana sylvatica). Environmental Toxicology and Chemistry 24(6): 1523–1527.CrossRefPubMedGoogle Scholar
  39. Griffis-Kyle, K. L., 2007. Sublethal effects of nitrite on eastern tiger salamander (Ambystoma tigrinum tigrinum) and wood frog (Rana sylvatica) embryos and larvae: implications for filed populations. Aquatic Ecology 41: 119–127.CrossRefGoogle Scholar
  40. Hardersen, S., 2000. Effects of carbaryl exposure on the last larval instar of Xanthocnemis zealandica. fluctuating asymmetry and adult emergence. Entomologia Experimentalis et Applicata 96: 221–230.CrossRefGoogle Scholar
  41. Hardersen, S. & C. M. Frampton, 1999. Effects of short term pollution on the level of fluctuating asymmetry – a case study using damselflies. Entomologia Experimentalis et Applicata 92: 1–7.CrossRefGoogle Scholar
  42. Hellawell, J. M., 1986. Biological Indicators of Freshwater Pollution and Environmental Management, Vol 44. Elsevier, New York: p. 546.Google Scholar
  43. Hogg, I. D., J. M. Eadie, D. D. Willians & D. Turner, 2001. Evaluating fluctuating asymmetry in a stream-dwelling insect as an indicator of low-level thermal stress: a large-scale field experiment. The Journal of Applied Ecology 38(6): 1326–1339.CrossRefGoogle Scholar
  44. IUCN, 2014. The IUCN Red List of Threatened Species, Version 2014.3. Accessible at Downloaded on 26 January 2014.
  45. Johnson, R. K., T. Weiderholm & D. M. Rosenberg, 1993. Freshwater biomonitoring using individual organisms, populations and species assemblages of benthic macroinvertebrates. In Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York: 40–105.Google Scholar
  46. Jones, D. K., J. I. Hammond & R. A. Relyea, 2010. Roundup® and amphibians: the importance of concentration, application time, and stratification. Environmental Toxicology and Chemistry 29(9): 2016–2025.PubMedGoogle Scholar
  47. Jones, D. K., J. I. Hammond & R. A. Relyea, 2011. Competitive stress can make the herbicide Roundup® more deadly to larval amphibians. Environmental Toxicology and Chemistry 30(2): 446–454.CrossRefPubMedGoogle Scholar
  48. Lajmanovich, R. C., M. T. Sandoval & P. M. Peltzer, 2003. Induction of mortality and malformation in Scinax nasicus tadpoles exposed by glyphosate formulations. Bulletin of Environmental Contamination and Toxicology 70: 612–618.CrossRefPubMedGoogle Scholar
  49. Lajmanovich, R. C., A. M. Attademo, P. M. Peltzer, C. M. Junges & M. Cabagna, 2011. Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. Archives of Environmental Contamination and Toxicology 60: 681–689.CrossRefPubMedGoogle Scholar
  50. Lajmanovich, R. C., C. M. Junges, A. M. Attademo, P. M. Peltzer, M. C. Cabagna-Zenklusen & A. Basso, 2013. Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles. Water, Air and Soil Pollution 224: 1–13.CrossRefGoogle Scholar
  51. Leung, B. & M. R. Forbes, 1997. Fluctuating asymmetry in relation to stress and fitness: effects of trait type as revealed by meta-analysis. Ecoscience 3: 400–413.Google Scholar
  52. Mann, R. M. & J. R. Bidweel, 1999. The toxicity of glyphosate and several glyphosate formulations to four species of Southwestern Australian frogs. Archives of Environmental Contamination and Toxicology 36: 193–199.CrossRefPubMedGoogle Scholar
  53. Mann, M. R., R. V. Hyne, C. B. Choung & S. P. Wilson, 2009. Amphibians and agricultural chemicals: review of the risks in a complex environment. Environmental Pollution 157: 2903–2927.CrossRefPubMedGoogle Scholar
  54. Møller, A. P., 1997. Developmental stability and fitness: a review. American Naturalist 149: 916–932.CrossRefPubMedGoogle Scholar
  55. Moreira, J. C., F. Peres, A. C. Simões, W. A. Pignati, E. C. Dores, S. N. Vieira, C. Strüssmann & T. Mott, 2012. Groundwater and rainwater contamination by pesticides in an agricultural Region of Mato Grosso State in Central Brazil. Ciência & Saúde Coletiva 17(6): 1557–1568.CrossRefGoogle Scholar
  56. Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.CrossRefPubMedGoogle Scholar
  57. Newton, M., K. M. Howard, B. R. Kelpsas, R. Danhaus, C. M. Lottman & S. Dubelman, 1984. Fate of glyphosate in an Oregon Forest Ecosystem. Journal of Agriculture and Food Chemistry 32: 1144–1151.CrossRefGoogle Scholar
  58. Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Annual Review of Ecology and Systematics 17: 391–421.CrossRefGoogle Scholar
  59. Pignati, W. A. & J. M. H. Machado, 2007. O agronegócio e seus impactos na saúde dos trabalhadores e da população do estado de Mato Grosso. Fiocruz/Ens, Rio de Janeiro: 81–105.Google Scholar
  60. Queiroz, G. M. P., M. R. Silva, R. J. F. Bianco, A. Pinheiro & V. Kaufman, 2011. Transporte de glifosato pelo escoamento superficial e por lixiviação em um solo agrícola. Química Nova 34(2): 190–195.CrossRefGoogle Scholar
  61. Rainio, J. & J. Niemelä, 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation 12: 487–506.CrossRefGoogle Scholar
  62. Reis, E. F., N. S. Pinto, F. G. Carvalho & L. Juen, 2011. Efeito da Integridade Ambiental Sobre a Assimetria Flutuante em Erythtodiplax basalis (Libellulidae: Odonata) (Kirby). Entomobrasilis 4(3): 103–107.CrossRefGoogle Scholar
  63. Relyea, R. A., 2005a. The lethal impacts of Roundup® and predatory stress on six species of North American tadpoles. Archives of Environmental Contamination and Toxicology 48: 351–357.CrossRefPubMedGoogle Scholar
  64. Relyea, R. A., 2005b. The impact of insecticides and Herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications 15(2): 618–627.CrossRefGoogle Scholar
  65. Relyea, R. A., 2005c. The lethal impact of Roundup® on aquatic and terrestrial amphibians. Ecological Applications 15(4): 1118–1124.CrossRefGoogle Scholar
  66. Relyea, R. A., 2006. The effects of pesticides, pH, and predatory stress on amphibians under mesocosm conditions. Ecotoxicology 15(6): 503–511.CrossRefPubMedGoogle Scholar
  67. Relyea, R. A., 2012. New effects of Roundup® on amphibians: predators reduce herbicide mortality; herbicides induce antipredators morphology. Ecological Applications 22(2): 634–647.CrossRefPubMedGoogle Scholar
  68. Relyea, R. A. & D. K. Jones, 2009. The toxicity of Roundup® Max to 13 species of larval amphibians. Environmental Toxicology and Chemistry 28(9): 2004–2008.CrossRefPubMedGoogle Scholar
  69. Sanseverino, A. M. & J. L. Nessimian, 2008. Assimetria flutuante em organismos aquáticos e sua aplicação para avaliação de impactos ambientais. Oecologia Brasiliensis 12: 382–405.Google Scholar
  70. Schiesari, L. & B. Grillitsch, 2011. Pesticides meet megadiversity in the expansion of biofuel crops. Frontiers in Ecology and Environment 9: 215–221.CrossRefGoogle Scholar
  71. Schiesari, L., B. Grillitsch & H. Grillitsch, 2007. Biogeographic biases in research and their consequences for linking amphibian declines to pollution. Conservation Biology 21(2): 465–471.CrossRefPubMedGoogle Scholar
  72. Schiesari, L., A. Waichman, T. Brock, C. Adams & B. Grillitsch, 2013. Pesticide use and biodiversity conservation in the Amazonian agriculture frontier. Philosophical Transactions of the Royal Society B 368: 1–9.CrossRefGoogle Scholar
  73. Searle, S. R., G. Casella & C. E. McCulloch, 1992. Variance Components. Wiley, Hoboken, NJ: 501 pp.Google Scholar
  74. Shin, C., A. Marco & L. Serrano, 2008. Inter- and intra-specific variation on sensitivity of larval amphibians to nitrite. Chemosphere 71: 507–514.CrossRefGoogle Scholar
  75. Silva, D. R. O., L. A. Avila, D. Agostinetto, T. D. Magro, E. Oliveira, R. Zanella & J. A. Noldin, 2009. Pesticides monitoring in surface water of rice production areas in southern Brazil. Ciência Rural 39(9): 2383–2389.CrossRefGoogle Scholar
  76. Simioni, F., D. F. N. da Silva & T. Mott, 2013. Toxicity of glyphosate on Physalaemus albonotatus (Steindachner, 1864) from Western Brazil. Ecotoxicology and Environmental Contamination 8(1): 55–58.Google Scholar
  77. Snodgrass, J. W., R. E. Casey, D. Joseph & J. A. Simon, 2008. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: variation in sensitivity among species. Environmental Pollution 154: 291–297.CrossRefPubMedGoogle Scholar
  78. Söderman, F., S. V. Dongen, S. Pakkasmaa & J. Merilä, 2007. Environmental stress increases skeletal fluctuating asymmetry in the moor frog Rana arvalis. Oecologia 151: 593–604.CrossRefPubMedGoogle Scholar
  79. Solomon, K. R. & D. G. Thompson, 2003. Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. Journal of Toxicology and Environmental Health, Part B: Critical Reviews 6(3): 289–324.CrossRefGoogle Scholar
  80. Sparling, D. W., G. M. Fellers & L. L. McConnell, 2001. Pesticides and amphibian population declines in California, USA. Environmental Toxicology and Chemistry 20(7): 1591–1595.CrossRefPubMedGoogle Scholar
  81. Stige, L. C., D. O. Hessen & L. A. Vøllestad, 2004. Severe food stress has no detectable impact on developmental instability in Daphnia magna. Oikos 107: 519–530.CrossRefGoogle Scholar
  82. Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman & R. W. Waller, 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783–1786.CrossRefPubMedGoogle Scholar
  83. Thompson, D. G., B. F. Wojtaszek, B. Staznik, D. T. Chartrand & G. R. Stephenson, 2004. Chemical and biomonitoring to assess potential acute effects of Vision Herbicide on native amphibian larvae in forest wetlands. Environmental Toxicology and Chemistry 23(4): 843–849.CrossRefPubMedGoogle Scholar
  84. U.S.EPA. (United States Environmental Protection Agency), 2008. Risks of glyphosate use to federally threatened California Red-legged frog (Rana aurora draytonii). Pesticide effects determination. Washington, D.C. Accessible at Downloaded on 30 November 2013.
  85. Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.CrossRefGoogle Scholar
  86. Zar, J. H., 1999. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ: 663 pp.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrasil
  2. 2.Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrasil
  3. 3.Laboratório de Herpetologia e Comportamento Animal, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrasil

Personalised recommendations