, Volume 760, Issue 1, pp 69–79 | Cite as

Shifting effects of rock roughness across a benthic food web

  • Elizabeth A. Bergey
  • Joshua T. Cooper
Primary Research Paper


Habitat heterogeneity affects the spatial pattern of stream organisms, but it is unclear how broadly heterogeneity affects the distribution of organisms within a food web. Specifically, rougher rocks have greater algal biomass than smoother rocks, and we hypothesized bottom-up food web control of food web structure, in which rougher rocks would also have higher grazer and predator abundance. We surveyed algal biomass and macroinvertebrates on rocks of differing roughness. We also conducted a field experiment to separately examine rock roughness and algal biomass effects by manipulating algal biomass by raking or scrubbing rocks within created rock clusters. Neither the survey nor the experiment strongly supported a bottom-up scenario. Algal biomass increased with rock roughness. Grazing mayfly abundance was distributed evenly among geologic rock types, except for a higher abundance of baetids on rocks with large cavities, where predatory stoneflies were also abundant. In the rock cluster experiment, the moderate raking disturbance produced higher grazer abundance and reduced algal biomass relative to unmanipulated controls. We concluded that fine-scale roughness directly promoted algal biomass, whereas larger-grain roughness (crevices) affected the distribution of the food web components by forming clumped distributions of grazing baetid mayflies and predatory stoneflies.


Spatial heterogeneity Rock roughness Surface texture Habitat heterogeneity Stream food webs 



We appreciate the use of facilities at the Rocky Mountain Biological Laboratory in Gothic, CO. Barbara Peckarsky advised on sampling sites and Emilee Tarver, Barrett Philips, Sarah Hobson, and Russell Hobson helped with field and laboratory work. Funding was provided by NSF CAREER grant DEB-0447449 and Oklahoma EPSCoR to EAB.

Supplementary material

10750_2015_2303_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)


  1. Álvarez, M. & I. Pardo, 2007. Factors controlling epilithon biomass in a temporary, karstic stream: the interaction between substratum and grazing. Journal of the North American Benthological Society 26: 207–220.CrossRefGoogle Scholar
  2. Antoine, S. E. & K. Benson-Evans, 1985. Colonisation rates of benthic algae on four different rock substrata in the River Ithon, Mid Wales, UK. Limnologica 16: 307–313.Google Scholar
  3. Bergey, E. A., 1999. Crevices as refugia for stream diatoms: effect of crevice size on abraded substrates. Limnology and Oceanography 44: 1522–1529.CrossRefGoogle Scholar
  4. Bergey, E. A., 2005. How protective are refuges? Quantifying algal protection in rock crevices. Freshwater Biology 50: 1163–1177.CrossRefGoogle Scholar
  5. Bergey, E. A., 2006. Measuring the surface roughness of stream stones. Hydrobiologia 563: 247–252.CrossRefGoogle Scholar
  6. Bergey, E. A., 2008. Does rock chemistry affect periphyton accrual in streams? Hydrobiologia 614: 141–150.CrossRefGoogle Scholar
  7. Bergey, E. A. & G. M. Getty, 2006. A review of methods for measuring the surface area of stream substrates. Hydrobiologia 556: 7–16.CrossRefGoogle Scholar
  8. Bergey, E. A. & J. E. Weaver, 2004. The influence of crevice size on the protection of epilithic algae from grazers. Freshwater Biology 49: 1014–1025.CrossRefGoogle Scholar
  9. Bergey, E. A., J. T. Cooper & B. C. Phillips, 2010. Substrate characteristics affect colonization by the bloom-forming diatom Didymosphenia geminata. Aquatic Ecology 44: 33–40.CrossRefGoogle Scholar
  10. Bjornn, T. C. & D. W. Reiser, 1991. Habitat requirements of salmonids in streams. In Meehan, W. R. (ed.) Influences of forest and rangeland management on salmonid fishes and their habitats. American Fisheries Society Special Publication 19. American Fisheries Society, Bethesda, MD: 83–138.Google Scholar
  11. Brown, B. L. & R. L. Lawson, 2010. Habitat heterogeneity and activity of an omnivorous ecosystem engineer control stream community dynamics. Ecology 91: 1799–1810.CrossRefPubMedGoogle Scholar
  12. Bunte, K. & S. R. Abt, 2001. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. Gen. Tech. Rep. RMRS-GTR-74. Fort Collins,CO.Google Scholar
  13. Cattaneo, A., T. Kerimian, M. Roberge & J. Marty, 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354: 101–110.CrossRefGoogle Scholar
  14. Clifford, H. F., R. J. Casey & K. A. Saffran, 1992. Short-term colonization of rough and smooth tiles by benthic macroinvertebrates and algae (chlorophyll a) in two streams. Journal of the North American Benthological Society 11: 304–315.CrossRefGoogle Scholar
  15. Cooper, S. D., B. Leon, O. Sarnelle, K. Kratz & S. Diehl, 1997. Quantifying spatial heterogeneity in streams. Journal of the North American Benthological Society 16: 174–188.CrossRefGoogle Scholar
  16. Doi, H. & I. Katano, 2008. Distribution patterns of stream grazers and relationships between grazers and periphyton at multiple spatial scales. Journal of the North American Benthological Society 27: 295–303.CrossRefGoogle Scholar
  17. Douglas, M. & P. S. Lake, 1994. Species richness of stream stones: an investigation of the mechanisms generating the species-area relationship. Oikos 69: 387–396.CrossRefGoogle Scholar
  18. Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 1998. Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs 68: 237–257.CrossRefGoogle Scholar
  19. Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581.CrossRefGoogle Scholar
  20. Dudley, T. L. & C. M. D’Antonio, 1991. The effects of substrate texture, grazing, and disturbance on macroalgal establishment in streams. Ecology 72: 297–309.CrossRefGoogle Scholar
  21. Erman, D. C. & N. A. Erman, 1984. The response of stream macroinvertebrates to substrate size and heterogeneity. Hydrobiologia 108: 75–82.CrossRefGoogle Scholar
  22. Francoeur, S. N., B. J. F. Biggs & R. L. Lowe, 1998. Microform bed clusters as refugia for periphyton in a flood-prone headwater stream. New Zealand Journal of Marine and Freshwater Research 32: 363–374.CrossRefGoogle Scholar
  23. Franken, R. J., J. J. Gardeniers, J. A. Beijer & E. T. H. M. Peeters, 2008. Variation in stonefly (Nemoura cinerea Retzius) growth and development in response to hydraulic and substrate conditions. Journal of the North American Benthological Society 27: 176–185.CrossRefGoogle Scholar
  24. Grosselin, L. A. & F. Chia, 1995. Distribution and dispersal of early juvenile snails: effectiveness of intertidal microhabitats as refuges and food sources. Marine Ecology Progress Series 128: 213–223.CrossRefGoogle Scholar
  25. Gurtz, M. E. & J. B. Wallace, 1984. Substrate-mediated response of stream invertebrates to disturbance. Ecology 65: 1556–1561.CrossRefGoogle Scholar
  26. Gutiérrez, J. L. & O. O. Iribarne, 2004. Conditional responses of organisms to habitat structure: an example from intertidal mudflats. Oecologia 139: 572–582.CrossRefPubMedGoogle Scholar
  27. Hart, D. D., 1979. Diversity in stream insects: regulation by rock size and microspatial complexity. Proceedings International Association of Theoretical and Applied Limnology 20: 1376–1381.Google Scholar
  28. Hart, D. D. & C. T. Robinson, 1990. Resource limitation in a stream community: phosphorus enrichment effects on periphyton and grazers. Ecology 71: 1494–1502.CrossRefGoogle Scholar
  29. Hill, W. R., S. C. Weber & A. J. Stewart, 1992. Food limitation of two lotic grazers: quantity, quality, and size-specificity. Journal of the North American Benthological Society 11: 420–432.CrossRefGoogle Scholar
  30. Hill, W. R., J. G. Smith & A. J. Stewart, 2010. Light, nutrients, and herbivore growth in oligotrophic streams. Ecology 91: 518–527.CrossRefPubMedGoogle Scholar
  31. Hines, A. H. & J. S. Pearse, 1982. Abalones, shells, and sea otters: dynamics of prey populations in central California. Ecology 63: 1547–1560.CrossRefGoogle Scholar
  32. Hovel, K. A. & R. A. Wahle, 2010. Effects of habitat patchiness on American lobster movement across a gradient of predation risk and shelter competition. Ecology 91: 1993–2002.CrossRefPubMedGoogle Scholar
  33. Johnson, M. P., R. N. Hughes, M. T. Burrows & S. J. Hawkins, 1998. Beyond the predation halo: small scale gradients in barnacle populations affected by the relative refuge value of crevices. Journal of Experimental Marine Biology and Ecology 231: 163–170.CrossRefGoogle Scholar
  34. Kagata, H. & T. Ohgushi, 2006. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol Res 21: 26–34.CrossRefGoogle Scholar
  35. Kock, C., A. Meyer, B. Spänhoff & E. I. Meyer, 2006. Tufa deposition in karst streams can enhance the food supply of the grazing caddisfly Melampophylax mucoreus (Limnephilidae). International Review of Hydrobiology 91: 242–249.CrossRefGoogle Scholar
  36. Kohler, S. L., 1984. Search mechanism of a stream grazer in patchy environments: the role of food abundance. Oecologia 62: 209–218.CrossRefGoogle Scholar
  37. Komárek, O., 2003. Spatial autocorrelation and fractal dimension of alga species assemblage in a gravel stream of Central Europe. International Review of Hydrobiology 88: 385–396.CrossRefGoogle Scholar
  38. Krejci, M. E. & R. L. Lowe, 1986. Importance of sand grain mineralogy and topography in determining micro-spatial distribution of epipsammic diatoms. Journal of the North American Benthological Society 5: 211–220.CrossRefGoogle Scholar
  39. Lamberti, G. A. & V. H. Resh, 1983. Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population. Ecology 64: 1124–1135.CrossRefGoogle Scholar
  40. Langenheim, J. H., 1962. Vegetation and environmental patterns in the Crested Butte area, Gunnison County, Colorado. Ecological Monographs 32: 249–285.CrossRefGoogle Scholar
  41. Lubchenco, J., 1983. Littornia and Fucus: effects of herbivores, substratum heterogeneity, and plant escapes during succession. Ecology 64: 1116–1123.CrossRefGoogle Scholar
  42. Mac Nally, R. & P. S. Lake, 1999. On the generation of diversity in archipelagos: a re-evaluation of the Quinn-Harrison ‘saturation index’. Journal of Biogeography 26: 285–295.CrossRefGoogle Scholar
  43. McCoy, E. D. & S. S. Bell, 1991. Habitat structure: the evolution and diversification of a complex topic. In Bell, S. S. & E. D. McCoy (eds.), Habitat Structure: the Physical Arrangement of Objects in Space. Chapman and Hall, London, UK: 3–27.CrossRefGoogle Scholar
  44. Murdock, J. N. & W. K. Dodds, 2007. Linking benthic algal biomass to stream sunstratum topography. Journal of Phycology 43: 449–460.CrossRefGoogle Scholar
  45. Palmer, T. M., 1995. The influence of spatial heterogeneity on the behavior and growth of two herbivorous stream insects. Oecologia 104: 476–486.CrossRefGoogle Scholar
  46. Peckarsky, B. L., 1980. Predator-prey interactions between stoneflies and mayflies: behavioral observations. Ecology 61: 932–943.CrossRefGoogle Scholar
  47. Peckarsky, B. L., 1996. Alternative predator avoidance syndromes of stream-dwelling mayfly larvae. Ecology 77: 1888–1905.CrossRefGoogle Scholar
  48. Peckarsky, B. L. & C. A. Cowan, 1995. Microhabitat and activity periodicity of predatory stoneflies and their mayfly prey in a western Colorado stream. Oikos 74: 513–521.CrossRefGoogle Scholar
  49. Peckarsky, B. L. & S. I. Dodson, 1980. Do stonefly predators influence benthic distributions in streams? Ecology 61: 1275–1282.CrossRefGoogle Scholar
  50. Peckarsky, B. L., S. I. Dodson & D. J. Conklin, 1985. A Key to the Aquatic Insects of Streams in the Vicinity of the Rocky Mountain Biological Lab, Including Chironomid Larvae from Streams and Ponds. Colorado Division of Wildlife, Denver CO.Google Scholar
  51. Power, M. E., 1990. Resource enhancement by indirect effects of grazers: armored catfish, algae, and sediment. Ecology 71: 897–904.CrossRefGoogle Scholar
  52. Pringle, C. M., R. J. Naiman, G. Bretschko, J. R. Karr, M. W. Oswood, R. W. Jackson, R. L. Welcomme & M. J. Winterbourn, 1988. Patch dynamics in lotic systems: the stream as a mosaic. Journal of the North American Benthological Society 7: 503–524.CrossRefGoogle Scholar
  53. Rader, R. B. & J. V. McArthur, 1995. The relative importance of refugia in determining the drift and habitat selection of predaceous stoneflies in a sandy-bottomed stream. Oecologia 103: 1–9.CrossRefGoogle Scholar
  54. Richards, C. & G. W. Minshall, 1988. The influence of periphyton abundance on Baetis bicaudatus distribution and colonization in a small stream. Journal of the North American Benthological Society 7: 77–86.CrossRefGoogle Scholar
  55. Ricklefs, R. E., 1977. Environmental heterogeneity and plant species diversity: a hypothesis. The American Naturalist 111: 376–381.CrossRefGoogle Scholar
  56. Roy, S. & J. S. Singh, 1994. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest. Journal of Ecology 82: 503–509.CrossRefGoogle Scholar
  57. Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.CrossRefGoogle Scholar
  58. Schneck, F., A. Schwarzbold & A. S. Melo, 2011. Substrate roughness affects stream benthic algal diversity, assemblage composition, and nestedness. Journal of the North American Benthological Society 30: 1049–1056.CrossRefGoogle Scholar
  59. Scrimgeour, G. J. & J. M. Culp, 1994. Feeding while evading predators by a lotic mayfly: linking short-term foraging behaviours to long-term fitness consequences. Oecologia 100: 128–134.CrossRefGoogle Scholar
  60. Scrimgeour, G. J., J. M. Culp & N. E. Glozier, 1993. An improved technique for sampling lotic invertebrates. Hydrobiologia 254: 65–71.CrossRefGoogle Scholar
  61. Skov, M. W., M. Volkelt-Igoe, S. J. Hawkins, B. Jesus, R. C. Thompson & C. P. Doncaster, 2010. Past and present grazing boosts the photo-autotrophic biomass of biofilms. Marine Ecology Progress Series 401: 101–111.CrossRefGoogle Scholar
  62. Wellnitz, T. & N. Leroy Poff, 2006. Herbivory, current velocity and algal regrowth: how does periphyton grow when the grazers have gone? Freshwater Biology 51: 2114–2123.CrossRefGoogle Scholar
  63. Wimp, G. M., S. M. Murphy, D. L. Finke, A. F. Huberty & R. F. Denno, 2010. Increased primary production shifts the structure and composition of a terrestrial arthropod community. Ecology 91: 3303–3311.CrossRefPubMedGoogle Scholar
  64. Winnie, J. A., P. Cross & W. Getz, 2008. Habitat quality and heterogeneity influence distribution and behavior in African buffalo (Syncerus caffer). Ecology 89: 1457–1468.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Oklahoma Biological SurveyUniversity of OklahomaNormanUSA
  2. 2.Department of BiologyUniversity of OklahomaNormanUSA
  3. 3.Department of Microbiology and Plant BiologyUniversity of OklahomaNormanUSA

Personalised recommendations