, Volume 764, Issue 1, pp 249–258 | Cite as

Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?

  • Jarka Komárková
  • Haydée Montoya
  • Jiří Komárek


Cyanobacterial blooms are commonly associated with high concentrations of nutrients in waters. An exception among the species forming heavy water blooms is Limnoraphis robusta Komárek et al. (Fottea 13:39–52, 2013). Until now, heavy water blooms of this species were found only in tropical, rather oligotrophic waters. Filaments of L. robusta contain diazocytes and thus are able to fix molecular nitrogen during night. This ability gives L. robusta an advantage over other phytoplankters to explore nitrogen-poor habitats. In 2014, filaments of this cyanobacterium appeared also in plankton and periphyton in the Bay of Puno, Lake Titicaca, Peru. Accessible data on water chemistry, chlorophyll a concentration, and phytoplankton composition were compared with those from Lake Atitlán, Guatemala, where this cyanobacterium formed a thick brownish layer on the water surface in 2008, 2009 and 2011. Except for shallow bays, both lakes (Atitlán and Lago Mayor of Titicaca) are still oligotrophic in some periods, and phytoplankton growth is limited by lack of nitrogen. In this paper, we are discussing factors which might allow development of heavy bloom of this cyanobacterium in the Lago Mayor and other clear parts of the Lake Titicaca.


Titicaca Lake Cyanobacterial water bloom Limnoraphis robusta Diazocytes Atitlán Lake N:P ratio 



This study was realized under the support of the bilateral international collaboration between the Czech Academy of Sciences and CONCYTEC (Peru) 2013–2014. We thank Dr. Gertrud Cronberg, Institute of Limnology, Lund, Sweden, for offering us her unpublished data about the composition of phytoplankton of the Atitlán and Amatitlán lakes from the year 1983. We are indebted to our referees both for comments on the text and helpful cultivation of our English.

Supplementary material

10750_2015_2298_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 30 kb)
10750_2015_2298_MOESM2_ESM.jpg (1.6 mb)
Supplementary material 2 (JPEG 1625 kb)
10750_2015_2298_MOESM3_ESM.jpg (600 kb)
Supplementary material 3 (JPEG 600 kb)
10750_2015_2298_MOESM4_ESM.jpg (892 kb)
Supplementary material 4 (JPEG 891 kb)
10750_2015_2298_MOESM5_ESM.jpg (133 kb)
Supplementary material 5 (JPEG 132 kb)
10750_2015_2298_MOESM6_ESM.jpg (212 kb)
Supplementary material 6 (JPEG 211 kb)
10750_2015_2298_MOESM7_ESM.docx (19 kb)
Supplementary material 7 (DOCX 19 kb)
10750_2015_2298_MOESM8_ESM.docx (18 kb)
Supplementary material 8 (DOCX 18 kb)


  1. Alvarez, S. & G. I. Bazán, 1994. Cianoficeas continentales de la Provincia de La Pampa (Argentina) – I. Revista de la Facultad de Agronomia – UNLPam 7(2): 43–62.Google Scholar
  2. Castellano & M. Dix, 2009. Informe final, UVG Levantamiento de la línea base del Lago de Atitlán Marzo de 2009. Ministerio de Ambiente y Recursos Naturales de Guatemala. Report, not paged.Google Scholar
  3. Carney, H. J., 1984. Productivity, population growth, and physiological responses to nutrient enrichments by phytoplankton of lake Titicaca, Peru-Bolivia. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 22: 1253–1257.Google Scholar
  4. Carney, H. J., P. J. Richerson & P. Eloranta, 1987. Lake Titicaca (Peru/Bolivia) phytoplankton species composition and structural comparison with other tropical and temperate lakes. Archiv für Hydrobiologie 110: 365–385.Google Scholar
  5. Chandra, S., M. Dix, E. Rejmánková, V. Mosquera, A. Heyvaert & N. Giron, 2014. El estado ecológico actual de la entrada de aquas residuales: Recomendación para exportacion de las aquas residuales de la Cuenca para restaurar el lago. Reporte científico para AMSCLAE (NG). Unidos por el lago Atitlán: 14.Google Scholar
  6. Chorus, I. & J. Bartram (eds), 1999. Toxic Cyanobacteria in Water. E & FN Spon, London.Google Scholar
  7. Dejoux, C. (ed.), 1992. Lake Titicaca. A Synthesis of Limnological Knowledge. Series: Monographiae Biologicae, XXIV 68: 576.Google Scholar
  8. Dejoux, C. & A. Iltis (eds), 1991. El Lago Titicaca. Síntesis del conocimiento limnológico actual. Orstom e Hisbol, La Paz: 580.Google Scholar
  9. Dix, M., I. Fortin, & O. Medinilla, 2003. Diagnostico Ecologico-Social y Plan Preliminar de Conservacion del Area de Atitlan, TNC, UVG (report, not paged).Google Scholar
  10. Fockelmann R. & T. Heege, 2011. EO information services in support of monitoring of water quality and land use changes in the Lake Titicaca Basin. EOWRLD Survey,
  11. Hendzel, L. L., R. E. Hecky & D. L. Findlay, 1994. Recent changes of N2 fixation in lake 227 in response to reduction of the N/P loading ratio. Canadian Journal of Fisheries and Aquatic Sciences 51: 2247–2253.CrossRefGoogle Scholar
  12. Hutchinson, G. E., 1957. A treatise on limnology. I. Geography, physics, and chemistry. Wiley, New York: 1015.Google Scholar
  13. Hübel, H. & M. Hübel, 1980. Nitrogen fixation during blooms of Nodularia in coastal waters and backwaters of the Arkona Sea (Baltic Sea) in 1974. Internationale Revue der gesamten Hydrobiologie und Hydrographie 65: 793–808.CrossRefGoogle Scholar
  14. Iltis, A., 1991a. Aspecto cuantitativo y poblaciones. In Dejoux, C. & A. Iltis (eds), El Lago Titicaca. Síntesis del conocimiento limnológico actual VI.1c. Orstom e Hisbol, La Paz: 199–210.Google Scholar
  15. Iltis, A., 1991b. Estudio florístico general. In Dejoux, C. & A. Iltis (eds), El Lago Titicaca. Síntesis del conocimiento limnológico actual. Orstom e Hisbol, La Paz: 191–197.Google Scholar
  16. Klausmeier, C. A., E. Litchman, T. Daufresne & S. A. Levin, 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429: 171–174.CrossRefPubMedGoogle Scholar
  17. Komárek, J., 2013. Cyanoprokaryota - 3. Teil/3rd Part: Heterocytous Genera. In Büdel, B., G. Gärtner, L. Krienitz & M. Schagerl (eds), Süswasserflora von Mitteleuropa (Freshwater Flora of Central Europe). Springer Spektrum Berlin, Heidelberg: 1130.Google Scholar
  18. Komárek, J. & J. Komárková-Legnerová, 2007. Several rare planktic cyanobacteria (cyanoprocaryotes) from reservoirs in South America. Hoehnea 34: 49–58.CrossRefGoogle Scholar
  19. Komárek, J., E. Zapomělová, J. Šmarda, J. Kopecký, E. Rejmánková, J. Woodhouse, B. A. Neilan & J. Komárková, 2013. Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of Limnoraphis gen. nov. Fottea 13: 39–52.CrossRefGoogle Scholar
  20. Lewis, W. M., 1974. Primary production in the plankton community of a tropical lake. Ecological Monographs 44: 377–409.CrossRefGoogle Scholar
  21. Lewis, W. M., 2000. Basis for the protection and management of tropical lakes. Lakes and Reservoirs Research and Management 5: 35–48.CrossRefGoogle Scholar
  22. Mioni C., R. Kudela, D. Baxa & M. Sullivan, 2011–2012. Harmful cyanobacteria blooms and their toxins in Clear Lake and the Sacramento – San Joaquin Delta (California). Report from: Surface Water Ambiente Monitoring Program (SWAMP), no. 10–058–150, (84 pp. + Append).Google Scholar
  23. Montoya, H., J. Komárková & J. Komárek, 2015. Cyanobacterial species, potentially forming water-blooms in the Lake Titicaca (Peru). Arnaldoa 21: 381–390.Google Scholar
  24. Nordin, R. N. & J. R. Stein, 1980. Taxonomic revision of Nodularia (Cyanophyceae/Cyanobacteria). Canadian Journal of Botany 58(11): 1211–1224.CrossRefGoogle Scholar
  25. Pérez, M. C., S. Bonilla, L. deLeón, J. Šmarda & J. Komárek, 1999. A bloom of Nodularia baltica-spumigena group (Cyanobacteria) in a shallow coastal lagoon of Uruguay, South America. Algological Studies 93: 91–101.Google Scholar
  26. Rejmánková, E., J. Komárek, M. Dix, J. Komárková & N. Girón, 2011. Cyanobacterial blooms in Lake Atitlan, Guatemala. Limnologica 41: 296–302.CrossRefGoogle Scholar
  27. Richerson, P. J., 1986. Polymixis and algal production: latitudinal effects on the seasonality of photosynthesis. Freshwater Biology 16: 781–803.CrossRefGoogle Scholar
  28. Richerson P., J., C. Widmer & T. Kittel, 1977. The limnology of Lake Titicaca (Peru-Bolivia), a Large, High Altitude Tropical Lake. Institute of Ecology Publication: 73, 14 June 1977.Google Scholar
  29. Rieckermann, J., H. Daebel, M. Ronteltap & T. Bernauer, 2006. Assessing the performance of international water management at Lake Titicaca. Aquatic Sciences 68: 502–516.CrossRefGoogle Scholar
  30. Richerson, P. J., 1991. El régimen de estratificación termal. In Dejoux, C. & A. Iltis (eds), El Lago Titicaca. Síntesis del conocimiento limnológico actual V.5. Orstom e Hisbol, Bolívia: 139–148.Google Scholar
  31. Richerson, P. J., J. Neale, W. Wurtsbaugh, R. Alvaro & W. Vincent, 1986. Patterns of temporal variation in Lake Titicaca. A high altitude tropical lake. I. Background, physical and chemical processes, and primary production. Hydrobiologia 138: 205–220.CrossRefGoogle Scholar
  32. Roegner, A., B. Brena & G. Gonzales-Sapienza, 2014. Microcystins in potable surface waters: toxic effects and removal strategies. Journal of applied Toxicology 34: 441–457.CrossRefPubMedGoogle Scholar
  33. Smith, V. H., 1990. Nitrogen, phosphorus, and nitrogen fixation in lacustrine and estuarine ecosystems. Limnology and Oceanography 35: 1852–1859.CrossRefGoogle Scholar
  34. Suda, S., Y. Liu, J. He, Z. Hu, M. Hiroki & M. M. Watanabe, 1998. Morphological, biochemical and physiological characteristics of Lyngbya hieronymusii var. hieronymusii (Oscillatoriales, Cyanobacteria). Phycological Research 46: 51–55.CrossRefGoogle Scholar
  35. Talling, J. F., 1969. The incidence of vertical mixing and some biological and chemical consequences in tropical African lakes. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 17: 998–1112.Google Scholar
  36. Talling, J. F. & J. Lemoalle (eds), 1998. Ecological Dynamics of Tropical Inland Waters. University Press Cambridge, Cambridge. 441.Google Scholar
  37. Tutin, T. G., 1940. The algae. Report No. XI. In H. C. Gilson (ed.), Reports of the Percy Sladen Trust Expedition. Transactions of the Linnean Society of London 1: 191–202.Google Scholar
  38. van Gremberghe, I., F. Leliaert, J. Mergeay, P. Vanormelingen, K. van der Gucht, A. Debeer, G. Lacerot, L. De Meester & W. Vyverman, 2011. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One 6(5): e19561.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Villalobos, A., V. Valdivieso & J. Véles. 2012. Anuario Cientifico Tecnologico IMARPE (Puno) 12: 186.Google Scholar
  40. Vincent, W. F., W. A. Wurtsbaugh, C. L. Vincent & P. J. Richerson, 1984. Seasonal dynamics of nutrient limitation in a tropical high-altitude lake (Lake Titcaca, Peru-Bolivia): applications of physiological bioassays. Limnology and Oceanography 29: 540–552.CrossRefGoogle Scholar
  41. Vincent, W. F., C. L. Vincent, M. T. Downes & P. J. Richerson, 1985. Nitrate cycling in Lake Titicaca (Peru-Bolivia): the effect of high-altitude and tropicality. Freshwater Biology 15: 31–42.CrossRefGoogle Scholar
  42. Weiss, C. M., 1971. Water Quality Investigations in Guatemala. Lake Atitlan 1968–1970. University of North Carolina: 175.Google Scholar
  43. Woodhouse, J. N., S. E. Ongley, V. M. Brown & B. E. Neilan, 2013. Microbial diversity and diazotrophy associated with the freshwater non-heterocyst forming cyanobacterium Lyngbya robusta. Journal of Applied Phycology 25: 1039–1045.CrossRefGoogle Scholar
  44. Wurtsbaugh, W. A., W. Vincente, R. A. Tapia, C. L. Vincente & P. J. Richerson, 1985. Nutrient limitation of algal growth and nitrogen fixation in a tropical alpine lake, Lake Titicaca (Peru/Bolivia). Freshwater Biology 15(2): 185–195.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jarka Komárková
    • 1
    • 2
  • Haydée Montoya
    • 3
  • Jiří Komárek
    • 2
  1. 1.Biology Centre, Institute of HydrobiologyCzech Academy of SciencesČeské BudějoviceCzech Republic
  2. 2.Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic
  3. 3.Universidad Nacional Mayor de San Marcos - Museo de Historia NaturalLima 14Peru

Personalised recommendations