Skip to main content
Log in

Spatial- and niche segregation of DCM-forming cyanobacteria in Lake Stechlin (Germany)

  • PHYTOPLANKTON & SPATIAL GRADIENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

At low trophic state, stable stratified water columns may provide favorable conditions for adapted phytoplankton species to form deep chlorophyll maxima (DCM). Such maxima occur regularly in Lake Stechlin, mainly contributed by the cyanobacterial species Cyanobium sp. and occasionally by Planktothrix rubescens. In the early twenty-first century, a rapid invasion by nostocalean cyanobacteria occurred in the lake and a number of Dolichospermum species together with Aphanizomenon flos-aquae appeared. As revealed by both microscopic and fluorimetric methods, during the summer stratification of 2013, a multispecific DCM was formed by Cyanobium, Planktothrix rubescens, and A. flos-aquae, however with spatial segregation. Planktothrix occurred in the upper hypolimnion, Aphanizomenon and Cyanobium dominated in the metalimnetic layer. Coexistence of these three cyanoprokaryota is possibly the consequence of different environmental factors limiting them (light, availability of N and P). This study represents a rare case when spatial niche segregation of phytoplankton species occurs in close to equilibrium conditions. DCM formed by Aphanizomenon and Cyanobium was detected by the fluoroprobe; Planktothrix with its different pigment compositions remained largely hidden. Our results indicate the necessity of parallel microscopic investigations and the need of careful calibration when fluorimetric methods are used for detecting cyanobacterial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott, M. R., K. L. Denmann, T. M. Powell, P. J. Richerson, R. C. Richards & C. R. Goldman, 1984. Mixing and the dynamics of a deep chlorophyll maximum in Lake Tahoe. Limnology and Oceanography 29: 862–878.

    Article  CAS  Google Scholar 

  • Akçalaan, R., L. Köker, C. Gürevit & M. Albay, 2014. Planktothrix rubescens: a perennial presence and toxicity in Lake Sapanca. Turkish Journal of Botany 38: 782–794.

    Article  Google Scholar 

  • APHA—American Public Health Association, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. United Book Press Inc, Baltimore, MD.

    Google Scholar 

  • Barbiero, R. P. & J. Kann, 1994. The importance of benthic recruitment to the population development of Aphanizomenon flos-aquae and internal loading in a shallow lake. Journal of Plankton Research 16: 1581–1588.

    Article  Google Scholar 

  • Barbiero, R. P. & M. L. Tuchman, 2001. Results from the US EPA’s biological open water surveillance program of the Laurentian Great Lakes: II. Deep chlorophyll maxima. Journal of Great Lakes Research 27: 155–166.

    Article  CAS  Google Scholar 

  • Barbiero, R. P. & M. L. Tuchman, 2004. The deep chlorophyll maximum in Lake Superior. Journal of Great Lakes Research 30: 256–268.

    Article  CAS  Google Scholar 

  • Bauchrowitz, M., 2012. The LakeLab—a new experimental platform to study impacts of global climate change on lakes. SILnews 60(June): 10–12.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1989. Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnology and Oceanography 34: 155–162.

    Article  Google Scholar 

  • Borics, G., A. Abonyi, E. Krasznai, G. Várbíró, I. Grigorszky, S. Szabó, Cs Deák & B. Tóthmérész, 2011. Small-scale patchiness of the phytoplankton in a lentic oxbow. Journal of Plankton Research 33: 973–981.

    Article  Google Scholar 

  • Bright, D. I. & A. E. Walsby, 2000. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zurich. New Phytologist 146: 301–316.

    Article  Google Scholar 

  • Callieri, C., 2008. Picophytoplankton in freshwater ecosystems: The importance of small-sized phototrophs. Freshwater Reviews 1: 1–28.

    Article  Google Scholar 

  • Camacho, A., 2006. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25: 453–478.

    Google Scholar 

  • Casper, S. J. (ed.), 1985. Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publ, Dordrecht.

    Google Scholar 

  • Clegg, M. R., U. Gaedke, B. Boeher & E. Spijkerman, 2012. Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum. Oecologia 169: 609–622.

    Article  PubMed  Google Scholar 

  • Davis, P. A., M. Dent, J. Parker, C. S. Reynolds & A. E. Walsby, 2003. The annual cycle of growth rate and biomass change in Planktothrix spp. in Blelhalm tarn, English lake district. Freshwater Biology 48: 852–867.

    Article  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2012. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698: 29–46.

    Article  CAS  Google Scholar 

  • Fahnenstiel, G. L. & J. M. Glime, 1983. Subsurface chlorophyll maximum and associated Cyclotella pulse in Lake Superior. Internationale Revue der gesamten Hydrobiologie 68: 605–616.

  • Gervais, F., 1997. Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake. Journal of Plankton Research 19: 533–550.

    Article  Google Scholar 

  • Gervais, F., J. Padisák & R. Koschel, 1997. Do light quality and low phosphorus concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? Journal of Plankton Research 19: 771–781.

    Article  Google Scholar 

  • Gorzó, G., 1987. Fizikai és kémiai faktorok hatása a Balatonban előforduló heterocisztás cianobaktériumok spóráinak csírázására (The influence of physical and chemical factors on the germination of spores of heterocystic cyanobacteria in Lake Balaton). Hidrológiai Közlöny 67: 127–133. (in Hungarian with English summary).

    Google Scholar 

  • Grigorszky, I., J. Padisák, G. Borics, C. Schitchen & G. Borbély, 2003. Deep chlorophyll maximum by Ceratium hirundinella (O.F. Müller) Berg in a shallow oxbow in Hungary. Hydrobiologia 506–509: 209–212.

    Article  Google Scholar 

  • Halstvedt, C. B., T. Rohrlack, T. Andersen, O. Skulberg & B. Edvardsen, 2007. Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors. Journal of Plankton Research 29: 471–482.

    Article  CAS  Google Scholar 

  • Hardin, G., 1960. The competitive exclusion theory. Science 131: 1292–1297.

    Article  CAS  PubMed  Google Scholar 

  • Hingsamer, P., F. Peeters & H. Hofmann, 2014. The consequences of internal waves for phytoplankton focusing on the distribution and production of Planktothrix rubescens. PloS one 9(8): e104359.

    Article  PubMed Central  PubMed  Google Scholar 

  • Holm-Hansen, O. & C. D. Hewes, 2004. Deep chlorophyll a maxima (DCMs) in Antarctic waters. Polar Biology 27: 699–710.

    Article  Google Scholar 

  • Juday, C., 1934. The depth distribution of some aquatic plants. Ecology 15: 325.

    Article  Google Scholar 

  • Karlsson-Elfgren, I. & A. K. Brunberg, 2004. The importance of shallow sediments in the recruitment of Anabaena and Aphanizomenon (Cyanophyceae). Journal of Phycology 40: 831–836.

    Article  Google Scholar 

  • Koenings, J. P. & J. A. Edmundson, 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbidity. Limnology and Oceanography 36: 91–105.

    Article  Google Scholar 

  • Konopka, A., 1982. Physiological ecology of a metalimnetic Oscillatoria rubescens population. Limnology and Oceanography 27: 1154–1161.

    CAS  Google Scholar 

  • Konopka, A., 1989. Metalimnetic cyanobacteria in hard-water lakes: Buoyancy regulation and physiological state. Limnology and Oceanography 34: 1174–1184.

    Article  CAS  Google Scholar 

  • Körner, C., 1993. Scaling from species to vegetation: The usefulness of functional groups. In Schulze, E. D. & H. A. Mooney (eds), Biodiversity and Ecosystem Function. Ecological Studies. Springer, Berlin: 117–140.

    Google Scholar 

  • Krieger, W., 1927. Die Gattung Centronella Voigt.—Ber Deutsch. Botanischen Gesellschaft 45: 281–290.

    Google Scholar 

  • Larson, D. W., C. N. Dahm & N. S. Geiger, 1987. Vertical partitioning of the phytoplankton assemblage in the ultraoligotrophic Crater Lake, Oregon, U.S.A. Freshwater Biology 18: 429–442.

    Article  Google Scholar 

  • Leboulanger, C., U. Dorigo, S. Jacquet, B. Le Berre, G. Paolini & J. F. Humbert, 2002. Application of a submersible spectrofluorometer for rapid monitoring of freshwater cyanobacterial blooms: a case study. Aquatic Microbial Ecology 30: 83–89.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The invert microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Micheletti, S., F. Schanz & A. E. Walsby, 1998. The daily integral of photosynthesis by Planktothrix rubsecens during summer stratification and autumnal mixing in Lake Zürich. New Phytologist 139: 233–246.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • OPTICOUNT, 2008. http://science.do-mix.de/software_opticount.php.

  • Padisák, J., L. Krienitz, R. Koschel & J. Nedoma, 1997. Deep layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. European Journal of Phycology 32: 403–416.

    Article  Google Scholar 

  • Padisák, J., F. A. R. Barbosa, R. Koschel & L. Krienitz, 2003a. Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 175–199.

    Google Scholar 

  • Padisák, J., W. Scheffler, P. Kasprzak, R. Koschel & L. Krienitz, 2003b. Interannual changes (1994–2000) of phytoplankton of Lake Stechlin. Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 101–133.

    Google Scholar 

  • Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton—and the mystery of the Red Cock. Hydrobiologia 653: 45–64.

    Article  Google Scholar 

  • Pełechaty, M. & P. M. Owsianny, 2003. Horizontal distribution of phytoplankton as related to the spatial heterogeneity of a lake—a case study from two lakes of the Wielkopolski National Park (western Poland). Hydrobiologia 510: 195–205.

    Article  Google Scholar 

  • Queimaliños, C. P., B. E. Modunetti & E. G. Balseiro, 1999. Symbiotic association of the ciliate Ophrydium naumanni with Chlorella causing a deep chlorophyll a maximum in an oligotrophic South Andes lake. Journal of Plankton Research 21: 167–178.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Salmaso, N., D. Copetti, L. Cerasino, S. Shams, C. Capelli, A. Boscaini, F. Pozzoni & L. Guzzella, 2014. Variability of microcystin cell quota in metapopulations of Planktothrix rubescens: Causes and implications for water management. Toxicon 90: 82–96.

    Article  CAS  PubMed  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Article  Google Scholar 

  • Solis, M. & W. Wojciechowska, 2014. Vertical distribution of phytoplankton in two mesotrophic lakes Annales University Maria Curie-Sklodowska. Biologia 68: 73–82.

    Google Scholar 

  • Tapolczai, K., V. Üveges, G. B. Selmeczy, P. Casper, L. Krienitz & J. Padisák, 2013. Az Aphanizomenon flos-aquae vertikális eloszlása egy mély, oligo-mezotróf tóban. Hidrológiai Közlöny 93(5-6): 75–77.

    Google Scholar 

  • Teubner, K., R. Feyerabend, M. Henning, A. Nicklisch, P. Woitke & J.-G. Kohl, 1999. Alternative blooming of Aphanizomenon flos-aquae or Planktothrix agardhii induced by the timing of the critical nitrogen:phosphorus ratio in hypertrophic riverine lakes. Archiv für Hydrobiologie Special Issues Advances in Limnology 54: 325–344.

    CAS  Google Scholar 

  • Üveges, V., K. Tapolczai, L. Krienitz & J. Padisák, 2012. Photosynthetic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany). Hydrobiologia 698: 263–272.

    Article  Google Scholar 

  • Vasas, G., O. Farkas, G. Borics, T. Felföldi, G. Sramkó, G. Batta, I. Bácsi & S. Gonda, 2013. Appearance of Planktothrix rubescens bloom with [D-Asp3, Mdha7]MC-RR in gravel pit pond of a shallow lake-dominated area. Toxins 5: 2434–2455.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welch, E. B., 1992. Ecological Effects of Waste Water. Chapman & Hall, London. 455 pp.

    Google Scholar 

  • Wildman, R. B., J. H. Loescher & C. L. Winger, 1975. Development and germination of akinetes of Aphanizomenon flos-aquae. Journal of Phycology 11: 96–104.

    Google Scholar 

  • Yamamoto, Y., 2009. Environmental factors that determine the occurrence and seasonal dynamics of Aphanizomenon flos-aquae. Journal of Limnology 68: 122–132.

    Article  Google Scholar 

  • Yamamoto, Y. & H. Nakahara, 2009. Life cycle of Cyanobacterium Aphanizomenon flos-aquae. Taiwania 54: 113–117.

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Michael Sachtleben, Ms. Maren Lentz, Ms. Uta Mallok, and Ms. Monika Papke for their field and laboratory assistance. The project “TemBi—Climate driven changes in biodiversity of microbiota” is granted by the Leibniz society (SAW-2011-IGB-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géza B. Selmeczy.

Additional information

Guest editors: Luigi Naselli-Flores & Judit Padisák / Biogeography and Spatial Patterns of Biodiversity of Freshwater Phytoplankton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmeczy, G.B., Tapolczai, K., Casper, P. et al. Spatial- and niche segregation of DCM-forming cyanobacteria in Lake Stechlin (Germany). Hydrobiologia 764, 229–240 (2016). https://doi.org/10.1007/s10750-015-2282-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2282-5

Keywords

Navigation