, Volume 758, Issue 1, pp 75–86 | Cite as

Nutrient- and sediment-induced macroinvertebrate drift in Honduran cloud forest streams

  • P. O’Callaghan
  • M. Jocqué
  • M. Kelly-Quinn
Primary Research Paper


Montane cloud forests are hydrologically unique, critically endangered ecosystems and frequently major sources of potable water, which have come under increasing pressure from human activities. It is therefore of vital importance that our understanding of the effects of anthropogenic stressors on the aquatic biota in these ecosystems is improved. To this end, a series of flow channel-based field experiments was performed to quantify the effects of nutrient enrichment and deposited fine sediment (two stressors commonly observed in tropical regions) on river macroinvertebrate assemblages in a cloud forest park in Honduras. Macroinvertebrate communities responded to the addition of nutrients (released from struvite) through an increased percentage abundance drifting and to elevated sediment levels with an increased percentage abundance and richness drifting in the first 24 h following treatment. A shift in community structure was also observed in response to elevated nutrients with lower abundances of some taxa and an overall decrease in richness. Our results indicate that increased nutrient loading and sedimentation can alter benthic macroinvertebrate community composition in high-altitude neotropical streams. Macroinvertebrate communities may be impacted via direct toxicity of nutrients and clogging of interstitial spaces and/or reductions in refugia due to sedimentation.


Drift Cloud-forest Colonisation Nutrient Sedimentation Pollution 



We would like to thank the people of Cusuco National Park for their cooperation and guidance on the numerous excursions in the forest. We also thank the staff and volunteers of Operation Wallacea for supporting the project as well as the Graduate Research Education Programme in sustainable development (GREP) funded jointly by the Irish Research Council for Science Engineering and Technology (IRCSET), and the Irish Research Council for Health and Social Sciences (IRCHSS) for funding the project.


  1. Alba-Tercedor, J. & A. Sanchez-Ortega, 1988. Un metodo rapido y simple para evaluar la calidad biologica de las agues corrientes basado en el de Hallawell (1987). Limnetica 4: 51–56.Google Scholar
  2. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research 17: 333–347.CrossRefGoogle Scholar
  3. Bellinger, B. J., C. Cocquyt & C. M. O’Reilly, 2006. Benthic diatoms as indicators of eutrophication in tropical streams. Hydrobiologia 573: 75–87.CrossRefGoogle Scholar
  4. Bornemisza, E., 1982. Nitrogen cycling in coffee plantations. Plant and Soil 67: 241–246.CrossRefGoogle Scholar
  5. Bridger, G. L., M. L. Salutsky & R. W. Starostka, 1962. Micronutrient sources, metal ammonium phosphates as fertilizers. Journal of Agricultural and Food Chemistry 10: 181–188.CrossRefGoogle Scholar
  6. Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift: a review. Hydrobiologia 166: 77–93.CrossRefGoogle Scholar
  7. Bruijnzeel, S. & L. S. Hamilton, 2000. Decision time for cloud forests. IHP Humid Tropics Programme Series No. 13. UNESCO Division of Water Sciences. UNESCO, Paris.Google Scholar
  8. Bryce, S. A., G. A. Lomnicky & P. R. Kaufmann, 2010. Protecting sediment-sensitive aquatic species in mountain streams through the application of biologically based streambed sediment criteria. Journal of the North American Benthological Society 29: 657–672.CrossRefGoogle Scholar
  9. Bubb, P., I. May, L. Miles & J. Sayer, 2004. Cloud forest agenda. UNEP-WCMC Biodiversity Series No 20. UNEP-WCMC, Cambridge: 1–32.Google Scholar
  10. Buss, D. F., D. F. Baptista, J. L. Nessimian & M. Egler, 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518: 179–188.CrossRefGoogle Scholar
  11. Camargo, J. A., A. Alonso & A. Salamanca, 2005. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58: 1255–1267.PubMedCrossRefGoogle Scholar
  12. Connolly, N. M. & R. G. Pearson, 2007. The effect of fine sedimentation on tropical stream macroinvertebrate assemblages: a comparison using flow-through artificial stream channels and recirculating mesocosms. Hydrobiologia 592: 423–438.CrossRefGoogle Scholar
  13. Davies-Colley, R. J., C. W. Hickey, J. M. Quinn & P. A. Ryan, 1992. Effects of clay discharges on streams. Hydrobiologia 248: 215–234.CrossRefGoogle Scholar
  14. Department of the environment, 2009. Statutory instruments no. 272 European communities environmental objectives (surface waters) regulations.Google Scholar
  15. Doeg, T. J. & G. A. Milledge, 1991. Effect of experimentally increasing concentration of suspended sediment on macroinvertebrate drift. Marine and Freshwater Research 42: 519–526.CrossRefGoogle Scholar
  16. Doeg, T. J. & J. D. Koehn, 1994. Effects of draining and desilting a small weir on downstream fish and macroinvertebrates. Regulated Rivers: Research & Management 9: 263–277.CrossRefGoogle Scholar
  17. Doumenge, C., D. Gilmour, M. R. Pérez & J. Blockhus, 1995. Tropical Montane Cloud Forests: Conservation Status and Management Issues. Tropical Montane Cloud Forests. Springer, San Juan, Puerto Rico: 24–37.Google Scholar
  18. Flecker, A. S., 1992. Fish predation and the evolution of invertebrate drift periodicity: evidence from neotropical streams. Ecology 73: 438–448.CrossRefGoogle Scholar
  19. Fossati, O., J.-G. Wasson, C. Hery, G. Salinas & R. Marin, 2001. Impact of sediment releases on water chemistry and macroinvertebrate communities in clear water Andean streams (Bolivia). Archiv für Hydrobiologie 151: 33–50.Google Scholar
  20. Gaterell, M. R., R. Gay, R. Wilson, R. J. Gochin & J. N. Lesterm, 2000. An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets. Environmental Technology 21: 1067–1084.CrossRefGoogle Scholar
  21. Graham, A. A., 1990. Siltation of stone-surface periphyton in rivers by clay-sized particles from low concentrations in suspension. Hydrobiologia 199: 107–115.CrossRefGoogle Scholar
  22. Grantham, T., M. Cañedo-Argüelles, I. Perrée, M. Rieradevall & N. Prat, 2012. A mesocosm approach for detecting stream invertebrate community responses to treated wastewater effluent. Environmental pollution 160: 95–102.PubMedCrossRefGoogle Scholar
  23. Hall, R. J., G. E. Likens, S. B. Fiance & G. R. Hendrey, 1980. Experimental acidification of a stream in the Hubbard Brook experimental forest, New Hampshire. Ecology 61: 976–989.CrossRefGoogle Scholar
  24. Hamilton, L. S., 1995. Mountain cloud forest conservation and research: a synopsis. Mountain Research and Development 15: 259–266.CrossRefGoogle Scholar
  25. Hickey, C. W. & M. L. Vickers, 1994. Toxicity of ammonia to nine native New Zealand freshwater invertebrate species. Archives of Environmental Contamination and Toxicology 26: 292–298.CrossRefGoogle Scholar
  26. Hickey, C. W., L. A. Golding, M. L. Martin & G. F. Croker, 1999. Chronic toxicity of ammonia to New Zealand freshwater invertebrates: a mesocosm study. Archives of Environmental Contamination and Toxicology 37: 338–351.PubMedCrossRefGoogle Scholar
  27. Hillaby, B. A. & D. J. Randall, 1979. Acute ammonia toxicity and ammonia excretion in rainbow trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 36: 621–629.CrossRefGoogle Scholar
  28. Hilsenhoff, W. L., 1988. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society 7: 65–68.CrossRefGoogle Scholar
  29. Iwata, T., S. Nakano & M. Inoue, 2003. Impacts of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecological Applications 13: 461–473.CrossRefGoogle Scholar
  30. Izagirre, O., A. Serra, H. Guasch & A. Elosegi, 2009. Effects of sediment deposition on periphytic biomass, photosynthetic activity and algal community structure. Science of the Total Environment 407: 5694–5700.PubMedCrossRefGoogle Scholar
  31. Kaller, M. D. & K. J. Hartman, 2004. Evidence of a threshold level of fine sediment accumulation for altering benthic macroinvertebrate communities. Hydrobiologia 518: 95–104.CrossRefGoogle Scholar
  32. Lecerf, A., P. Usseglio-Polatera, J.-Y. Charcosset, D. Lambrigot, B. Bracht & E. Chauvet, 2006. Assessment of functional integrity of eutrophic streams using litter breakdown and benthic macroinvertebrates. Archiv für Hydrobiologie 165: 105–126.CrossRefGoogle Scholar
  33. Mason, C. F., 2002. Biology of freshwater pollution. Essex, UK, Pearson Education.Google Scholar
  34. Merritt, R. W. & K. W. Cummins, 2008. An introduction to the aquatic insects of North America, 4th ed. Kendall/Hunt Publishing Co., Dubuque.Google Scholar
  35. Miltner, R. J. & E. T. Rankin, 1998. Primary nutrients and the biotic integrity of rivers and streams. Freshwater Biology 40: 145–158.CrossRefGoogle Scholar
  36. Minshall, G. W., 1988. Stream ecosystem theory: a global perspective. Journal of the North American Benthological Society 7: 263–288.CrossRefGoogle Scholar
  37. Mokaya, S. K., J. M. Mathooko & M. Leichtfried, 2004. Influence of anthropogenic activities on water quality of a tropical stream ecosystem. African Journal of Ecology 42: 281–288.CrossRefGoogle Scholar
  38. Mol, J. H. & P. E. Ouboter, 2004. Downstream effects of erosion from small-scale gold mining on the instream habitat and fish community of a small neotropical rainforest stream. Conservation Biology 18: 201–214.CrossRefGoogle Scholar
  39. Mundie, J. H., K. S. Simpson & C. J. Perrin, 1991. Responses of stream periphyton and benthic insects to increases in dissolved inorganic phosphorus in a mesocosm. Canadian Journal of Fisheries and Aquatic Sciences 48: 2061–2072.CrossRefGoogle Scholar
  40. O’Callaghan, P. 2013. Macroinvertebrate communities of the rivers draining Cusuco National Park, Honduras with particular reference to bioassessment needs. School of Biology and Environmental Science. Unpublished, University College Dublin. PhD.Google Scholar
  41. Olsen, D. A. & M. C. Watzin, 2009. Do agricultural pollutants affect competition between filter-feeding caddis fly larvae? Results of laboratory microcosm experiments. Freshwater Biology 54: 406–416.CrossRefGoogle Scholar
  42. Piggott, J. J., K. Lange, C. R. Townsend & C. D. Matthaei, 2012. Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment. PLoS ONE 7: e49873.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Quinn, J., R. Davies-Colley, C. Hickey, M. Vickers & P. Ryan, 1992. Effects of clay discharges on streams. Hydrobiologia 248: 235–247.CrossRefGoogle Scholar
  44. Rabení, C. F., K. E. Doisy & L. D. Zweig, 2005. Stream invertebrate community functional responses to deposited sediment. Aquatic Sciences 67: 395–402.CrossRefGoogle Scholar
  45. Ramírez, A. & C. M. Pringle, 2001. Spatial and temporal patterns of invertebrate drift in streams draining a neotropical landscape. Freshwater Biology 46: 47–62.CrossRefGoogle Scholar
  46. Reynolds-Vargas, J. S., D. D. Richter & E. Bornemisza, 1994. Environmental impacts of nitrification and nitrate adsorption in fertilized andisols in the Valle Central of Costa Rica. Soil Science 157: 289–299.CrossRefGoogle Scholar
  47. Rice, R. A., 1999. A place unbecoming: the coffee farm of northern Latin America. Geographical Review 89: 554–579.PubMedCrossRefGoogle Scholar
  48. Richards, C., R. Haro, L. Johnson & G. Host, 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology 37: 219–230.CrossRefGoogle Scholar
  49. Ríos-Touma, B., N. Prat & A. C. Enclada, 2012. Invertebrate drift and colonization processes in a tropical Andean stream. Aquatic Biology 14: 233–246.CrossRefGoogle Scholar
  50. Ross, S. M., J. B. Thornes & S. Nortcliff, 1990. Soil hydrology, nutrient and erosional response to the clearance of terra firme forest, Maracá Island, Roraima, Northern Brazil. The Geographical Journal 156: 267–282.CrossRefGoogle Scholar
  51. Ryu, H.-D., C.-S. Lim, Y.-K. Kim, K.-Y. Kim & S.-I. Lee, 2011. Recovery of struvite obtained from semiconductor wastewater and reuse as a slow-release fertilizer. Environmental Engineering Science 29: 540–548.CrossRefGoogle Scholar
  52. Scott, G. & R. L. Crunkilton, 2000. Acute and chronic toxicity of nitrate to fathead minnows (Pimephales promelas), ceriodaphnia dubia, and Daphnia magna. Environmental Toxicology and Chemistry 19: 2918–2922.CrossRefGoogle Scholar
  53. Smith, V., 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research 10: 126–139.PubMedCrossRefGoogle Scholar
  54. Smith, A. J., R. W. Bode & G. S. Kleppel, 2007. A nutrient biotic index (NBI) for use with benthic macroinvertebrate communities. Ecological Indicators 7: 371–386.CrossRefGoogle Scholar
  55. Springer, M., P. Hanson & A. Ramírez, 2010. Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biologia Tropical 58(Suppl 4): 240.Google Scholar
  56. Suren, A. M. & I. G. Jowett, 2001. Effects of deposited sediment on invertebrate drift: an experimental study. New Zealand Journal of Marine and Freshwater Research 35: 725–737.CrossRefGoogle Scholar
  57. Wagenhoff, A., C. R. Townsend & C. D. Matthaei, 2012. Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: a stream mesocosm experiment. Journal of Applied Ecology 49: 892–902.CrossRefGoogle Scholar
  58. Wicks, B. J., R. Joensen, Q. Tang & D. J. Randall, 2002. Swimming and ammonia toxicity in salmonids: the effect of sub lethal ammonia exposure on the swimming performance of coho salmon and the acute toxicity of ammonia in swimming and resting rainbow trout. Aquatic Toxicology 59: 55–69.PubMedCrossRefGoogle Scholar
  59. Wiley, M. J. & S. L. Kohler, 1980. Positioning changes of mayfly nymphs due to behavioral regulation of oxygen consumption. Canadian Journal of Zoology 58: 618–622.CrossRefGoogle Scholar
  60. Williams, M., T. R. Fisher & J. M. Melack, 1997. Solute dynamics in soil water and groundwater in a central Amazon catchment undergoing deforestation. Biogeochemistry 38: 303–335.CrossRefGoogle Scholar
  61. Wood, P. J., A. R. Vann & P. J. Wanless, 2001. The response of Melampophylax mucoreus (Hagen) (Trichoptera: Limnephilidae) to rapid sedimentation. Hydrobiologia 455: 183–188.CrossRefGoogle Scholar
  62. Wood, P. J., J. Toone, M. T. Greenwood & P. D. Armitage, 2005. The response of four lotic macroinvertebrate taxa to burial by sediments. Archiv für Hydrobiologie 163: 145–162.CrossRefGoogle Scholar
  63. Wright, J. F. & A. D. Berrie, 1987. Ecological effects of groundwater pumping and a natural drought on the upper reaches of a chalk stream. Regulated Rivers: Research & Management 1: 145–160.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • P. O’Callaghan
    • 1
    • 3
  • M. Jocqué
    • 2
    • 3
    • 4
  • M. Kelly-Quinn
    • 1
  1. 1.School of Biology and Environmental Science, Science Centre WestUniversity College DublinDublin 4Ireland
  2. 2.Jessica Ware LabRutgers, the State University of New JerseyNewarkUSA
  3. 3.Operation WallaceaLincolnshireUK
  4. 4.Royal Belgian Institute of Natural Sciences (RBINS)BrusselsBelgium

Personalised recommendations