, Volume 764, Issue 1, pp 81–90 | Cite as

Functional phytoplankton distribution in hypertrophic systems across water body size

  • Gábor Borics
  • Béla Tóthmérész
  • Gábor Várbíró
  • István Grigorszky
  • Andrea Czébely
  • Judit Görgényi


Distribution of algae was studied in a series of water bodies ranging from 10−2 to ~109 m2 in the lowland region of the Carpathian basin in a late summer period. It has been demonstrated that lake size has pronounced impact on the morphological and chemical properties of the water bodies, and acting through these variables it shapes the distribution of the various algal groups in the water bodies of different sizes. Changes of the relative abundance of the various algal groups along the spatial scale showed four apparently distinct patterns. We found increasing relative abundance of heterocytic cyanobacteria, dinoflagellates and those taxa which have no capability of active locomotion and are characterised by high sinking rate in the large water bodies. The flagellated algae (Chlamydomonas spp., euglenophytes, Synura spp.) and the tichoplanktonic elements were characteristic for small-sized water bodies. Most of the chrysophytes and several other flagellated taxa showed hump-shaped distribution along the size scale of water bodies. The group of large colonial flagellated chlorophytes, non-heterocytic filamentous cyanobacteria and filamentous chlorophytes occasionally occurred in high relative abundance both in small and large-sized water bodies. Our findings suggest that water body size has pronounced impact on the composition of algal assemblages.


Island biogeography Algae Functional groups Water body size Size scale dependence 



This research was supported by the Hungarian National Science Foundation (OTKA Nr. 104279) and by the Bolyai Fellowship of the Hungarian Academy of Sciences. The authors were supported by TÁMOP-4.2.4.A/2-11-1-2012-0001, TÁMOP-4.2.1./B-09/1/KONV-2010-0007, TÁMOP-4.2.2/C-11/1/KONV-2012-0010 and TÁMOP-4.2.2/B-10-1-2010-0024 projects. The authors are grateful for the referees for their very constructive comments.

Supplementary material

10750_2015_2268_MOESM1_ESM.docx (105 kb)
Supplementary material 1 (DOCX 104 kb)
10750_2015_2268_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)


  1. Borics, G., B. Tóthmérész, I. Grigorszky, J. Padisák, G. Várbíró & S. Szabó, 2003. Algal assemblage types of boglakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145–155.CrossRefGoogle Scholar
  2. Borics, G., G. Várbíró, I. Grigorszky, E. Krasznai, S. Szabó & K. T. Kiss, 2007. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Large Rivers 17(3–4): 465–486.Google Scholar
  3. Borics, G., A. Abonyi, E. Krasznai, G. Várbíró, I. Grigorszky, S. Szabó, C. Deák & B. Tóthmérész, 2011. Small-scale patchiness of the phytoplankton in a lentic oxbow. Journal of Plankton Research 33: 973–981.CrossRefGoogle Scholar
  4. Fee, E. J., J. A. Shearer, E. R. De Bruyn & D. W. Schnidler, 1992. Effects of lake size on phytoplankton photosynthesis. Canadian Journal of Fisheries and Aquatic Sciences 49: 2445–2459.CrossRefGoogle Scholar
  5. Grigorszky, I., J. Padisák, G. Borics, C. Schitchen & G. Borbély, 2003. Deep chlorophyll maximum by Ceratium hirundinella (O. F. Müller) Bergh in a shallow oxbow in Hungary. Hydrobiologia 506–509: 209–212.CrossRefGoogle Scholar
  6. Guildford, S. J., L. L. Hendzel, H. J. Kling, E. J. Fee, G. C. G. Robinson, R. E. Hecky & S. E. M. Kasian, 1994. Effects of lake size on phytoplankton nutrient status. Canadian Journal of Fisheries and Aquatic Sciences 51: 2769–2783.CrossRefGoogle Scholar
  7. Hastie, T. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London.Google Scholar
  8. Herkert, J. R., 1994. The effects of habitat fragmentation on midwestern grassland bird communities. Ecological Applications 4: 461–471.CrossRefGoogle Scholar
  9. Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.CrossRefGoogle Scholar
  10. Kerekes, J., 1977. The index of Lake Basin permanence. Internationale Revue der gesamten Hydrobiologie und Hydrographie 62(2): 291–293.CrossRefGoogle Scholar
  11. Komarek, J., 2013. Süsswasserflora von Mitteleuropa, Band 19/3.Google Scholar
  12. Krasznai, E., G. Borics, G. Várbíró, A. Abonyi, J. Padisák, C. Deák & B. Tóthmérész, 2010. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639(1): 173–184.CrossRefGoogle Scholar
  13. Kruk, C., V. L. M. Huszar, E. Peeters, S. Bonilla, L. Costa, M. Lurling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.CrossRefGoogle Scholar
  14. Lemke, J. L., 2000. Across the scales of time: artifacts, activities, and meanings in ecosocial systems. Mind, Culture, and Activity 7: 273–290.CrossRefGoogle Scholar
  15. Meier, S. & J. Soininen, 2014. Phytoplankton metacommunity structure in subarctic rock pools. Aquatic Microbial Ecology 73: 81–91.CrossRefGoogle Scholar
  16. Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: The absolute, the relative, the functional and the pragmatic. Hydrobiologia 506–509: 1–11.CrossRefGoogle Scholar
  17. Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.CrossRefGoogle Scholar
  18. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  19. Padisák, J., G. Vasas & G. Borics, 2015. Phycogeography of freshwater phytoplankton – traditional knowledge and new molecular tools. Hydrobiologia. doi: 10.1007/s10750-015-2259-4.Google Scholar
  20. Phillips, G., O. P. Pietilainen, L. Carvalho, A. Solimini, A. Lyche Solheim & A. C. Cardoso, 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.CrossRefGoogle Scholar
  21. Post, D. M., M. L. Pace & N. G. Hairston, 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.CrossRefPubMedGoogle Scholar
  22. Poulicková, A., P. Hasler, M. Lysáková & B. Spears, 2008. The ecology of freshwater epipelic algae: an update. Phycologia 47: 437–450.CrossRefGoogle Scholar
  23. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535.CrossRefGoogle Scholar
  24. Reynolds, C. S., 2012. Environmental requirements and habitat preferences of phytoplankton: chance and certainty in species selection. Botanica Marina 55: 1–17.CrossRefGoogle Scholar
  25. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  26. Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  27. Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.CrossRefGoogle Scholar
  28. Smayda, T. J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology. Annual Review 8: 353–414.Google Scholar
  29. Smith, V. H., B. L. Foster, J. P. Grover, R. D. Holt, M. A. Leibold & F. de Noyelles Jr., 2005. Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. Proceedings of the National Academy of Sciences of the United States of America 102: 4393–4396.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: Does it make any difference? Archiv Für Hydrobiologie 162: 143–165.CrossRefGoogle Scholar
  31. Stomp, M., J. Huisman, G. Mittelbach, E. Litchman & C. Klausmeier, 2011. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92: 2096–2107.CrossRefPubMedGoogle Scholar
  32. Tátrai, I., V. Istvánovics, L. G. Tóth & I. Kóbor, 2008. Management measures and long-term water quality changes in Lake Balaton (Hungary). Fundamental and Applied Limnology 172: 1–11.CrossRefGoogle Scholar
  33. Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  34. Ter Braak C. J. F, & P. Smilauer, 2002. Canoco Reference Manual and Canodraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.Google Scholar
  35. Ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 253–287.Google Scholar
  36. Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 487–495.CrossRefGoogle Scholar
  37. Winslow, L. A., J. S. Read, P. C. Hanson & E. H. Stanley, 2014. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes. Inland Waters 5: 7–14.CrossRefGoogle Scholar
  38. Wetzel, R. G., 2001. Limnology, Lake and River Ecosystem. Academic Press, New York.Google Scholar
  39. Whittington, J., B. S. Sherman, D. Green & R. L. Oliver, 2000. Growth of Ceratium hirundinella in a sub-tropical Australian reservoir: the role of vertical migration. Journal of Plankton Research 22: 1025–1045.CrossRefGoogle Scholar
  40. Zakrys, B., J. Empel, R. Milanowski, R. Gromadka, P. Borsuk, M. Kedzior & J. Kwiatowski, 2004. Genetic variability of Euglena agilis (Euglenophyceae). Acta Societatis Botanicorum Poloniae 73: 305–309.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gábor Borics
    • 1
  • Béla Tóthmérész
    • 2
  • Gábor Várbíró
    • 1
  • István Grigorszky
    • 3
  • Andrea Czébely
    • 4
  • Judit Görgényi
    • 1
  1. 1.Department of Tisza ResearchMTA Centre for Ecological ResearchDebrecenHungary
  2. 2.MTA-DE Biodiversity and Ecosystem Services Research GroupDebrecenHungary
  3. 3.Department of HydrobiologyUniversity of DebrecenDebrecenHungary
  4. 4.Water Quality LaboratoryIsotoptech Zrt.DebrecenHungary

Personalised recommendations