, Volume 757, Issue 1, pp 155–165 | Cite as

New insights towards the establishment of phycocyanin concentration thresholds considering species-specific variability of bloom-forming cyanobacteria

  • Inês P. E. Macário
  • Bruno B. Castro
  • Maria I. S. Nunes
  • Sara C. Antunes
  • Cristina Pizarro
  • Carla Coelho
  • Fernando Gonçalves
  • Daniela R. de Figueiredo
Primary Research Paper


In vivo phycocyanin (PC) fluorescence allows assessing cyanobacterial abundance in an easy, fast and cost-effective way. However, the establishment of PC thresholds is necessary for its use in routine monitoring programmes and there has been no consensus regarding their definition. This work aimed: (1) to assess the potential species-specific variation in fluorometric PC content among Microcystis aeruginosa, Nostoc muscorum and Cylindrospermopsis raciborskii; (2) to propose specific PC thresholds based on World Health Organization alert levels; and (3) to evaluate the in vivo PC signal reliability to interferences from massive algal growth and mixtures of bloom-forming cyanobacteria. Strong linear relationships were recorded between PC and cell counts, biovolume and chlorophyll a. However, a significant species-specific variation in PC was observed using cell counts. Increased microalgal densities did not cause significant interference of PC signals. Also, dual mixtures of cyanobacteria revealed strong relationships between measured and expected PC content. Results suggest that fluorometric PC is a good predictor for cyanobacterial biomass but cell number is not the best parameter to define thresholds. Biovolume should be used instead. Nevertheless, species-specific thresholds must be considered, rather than a general cyanobacterial threshold.


Cyanobacterial blooms Phycocyanin Fluorometry Monitoring Thresholds 



This work was supported by European Funds through COMPETE and by National Funds through the Portuguese Science Foundation (FCT) within project PEst-C/MAR/LA0017/2013. Daniela de Figueiredo and Bruno B. Castro were also supported by FCT, by means of a post-doctoral Grant (SFRH/BPD/74184/2010) and a research contract (programme Ciência2008, co-funded by National Strategic Reference Framework 2007–2013 and European Social Fund), respectively. The authors thank Victor Galhano for providing one of the cyanobacterial cultures.

Supplementary material

10750_2015_2248_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)


  1. Ahn, C. Y., A. S. Chung & H. M. Oh, 2002. Rainfall, phycocyanin and N:P ratios related to cyanobacterial blooms in a Korean large reservoir. Hydrobiologia 474: 117–124.CrossRefGoogle Scholar
  2. Ahn, C. Y., S. H. Joung, S. K. Yoon & H. M. Oh, 2007. Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant. The Journal of Microbiology 45: 98–104.PubMedGoogle Scholar
  3. Anderson, D. M., A. D. Cembella & G. M. Hallegraeff, 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science 4: 143–176.CrossRefPubMedGoogle Scholar
  4. APHA, 1999. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.Google Scholar
  5. Bastien, C., R. Cardin, E. Veilleux, C. Deblois, A. Warren & L. Laurion, 2011. Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria. Journal of Environmental Monitoring 13: 110–118.CrossRefPubMedGoogle Scholar
  6. Bellinger, G. E., D. C. Sigee & Wiley-Blackwell, 2010. Freshwater Algae: Identification and Use as Bioindicators. Wiley-Blackwell, Hardcover.CrossRefGoogle Scholar
  7. Bennett, A. & L. Bogorad, 1973. Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology 58: 419–435.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bowling, L., D. Ryan, J. Holliday & G. Honeyman, 2012. Evaluation of in situ fluorometry to determine cyanobacterial abundance in the Murray and Lower Darling Rivers, Australia. River Research and Applications 29: 1059–1071.Google Scholar
  9. Brient, L., M. Lengronne, E. Bertrand, D. Rolland, A. Sipel, D. Steinmann, I. Baudin, M. Legeas, B. Le Rouzic & B. Myriam, 2008. A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. The Royal Society of Chemistry 10: 248–255.Google Scholar
  10. Chang, D. W., P. Hobson, M. Burch & T. F. Lin, 2012. Measurement of cyanobacteria using in vivo fluoroscopy – effect of cyanobacterial species, pigments, and colonies. Water Research 46: 5037–5048.CrossRefPubMedGoogle Scholar
  11. Chorus, I. & J. Bartram, 1999. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. E & FN Spon, London.CrossRefGoogle Scholar
  12. Codd, G., S. Azevedo, S. Bagchi, M. Burch, W. Carmichael, W. Harding, K. Kaya & H. Utkilen, 2005. CYANONET: A Global Network for Cyanobacterial Bloom and Toxin Risk Management. Initial Situation Assessment and Recommendations. International Hydrological Programme (IHP) of the United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris: 1–5.Google Scholar
  13. Davis, T. W., D. L. Berry, G. L. Boyer & C. J. Gobler, 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715–725.CrossRefGoogle Scholar
  14. De Figueiredo, D., U. M. Azeiteiro, S. Esteves, F. Gonçalves & M. Pereira, 2004. Microcystin-producing blooms – a serious global public health issue. Ecotoxicology and Environmental Safety 59: 151–163.CrossRefPubMedGoogle Scholar
  15. De Figueiredo, D., A. Alves, M. J. Pereira & A. Correia, 2009. Molecular characterization of bloom-forming Aphanizomenon strains isolated from Vela Lake (Western Central Portugal). Journal of Plankton Research 32: 239–252.CrossRefGoogle Scholar
  16. De Figueiredo, D., A. Gonçalves, B. Castro, F. Gonçalves, M. J. Pereira & A. Correia, 2011. Differential inter- and intra-specific responses of Aphanizomenon strains to nutrient limitation and algal growth inhibition. Journal of Plankton Research 33: 1606–1616.CrossRefGoogle Scholar
  17. Goletz, C., M. Wagner, A. Grübel, W. Schmidt, N. Korf & P. Werner, 2011. Standardization of fluorescence excitation–emission-matrices in aquatic milieu. Talanta 85: 650–656.CrossRefPubMedGoogle Scholar
  18. Gregor, J. & B. Maršálek, 2005. A simple in vivo fluorescence method for the selective detection and quantification of freshwater cyanobacteria and eukaryotic algae. Acta Hydrochimica et Hydrobiologica 33: 142–148.CrossRefGoogle Scholar
  19. Gregor, J., B. Marsalek & H. Sipkova, 2007. Detection and estimation of potentially toxic cyanobacteria in raw water at the drinking water treatment plant by in vivo fluorescence method. Water Research 41: 228–234.CrossRefPubMedGoogle Scholar
  20. Hallegraeff, G. M., 2010. Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. Journal of Phycology 46: 220–235.CrossRefGoogle Scholar
  21. Hawkins, P. R., J. Holliday, A. Kathuria & L. Bowling, 2005. Change in cyanobacterial biovolume due to preservation by lugol’s iodine. Harmful Algae 4: 1033–1043.CrossRefGoogle Scholar
  22. Hillebrand, H., C. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 424: 403–424.CrossRefGoogle Scholar
  23. Horváth, H., A. W. Kovács, C. Riddick & M. Présing, 2013. Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake. European Journal of Phycology 48: 278–286.CrossRefGoogle Scholar
  24. Hudnell, H. K., 2010. The state of U.S. freshwater harmful algal blooms assessments, policy and legislation. Toxicon 55: 1024–1034.CrossRefPubMedGoogle Scholar
  25. Izydorczyk, K., M. Tarczynska, T. Jurczak, J. Mrowczynski & M. Zalewski, 2005. Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Environmental Toxicology 20: 425–430.CrossRefPubMedGoogle Scholar
  26. Izydorczyk, K., C. Carpentier, J. Mrówczynski, A. Wagenvoort, T. Jurczak & M. Tarczynska, 2009. Establishment of an alert level framework for cyanobacteria in drinking water resources by using the algae online analyser for monitoring cyanobacterial chlorophyll a. Water Research 43: 989–996.CrossRefPubMedGoogle Scholar
  27. Joung, S., C. Kim, C. Ahn & K. Jang, 2006. Simple method for a cell count of the colonial cyanobacterium, Microcystis sp. The Journal of Microbiology 44: 562–565.PubMedGoogle Scholar
  28. Lawaetz, A. J. & C. A. Stedmon, 2009. Fluorescence intensity calibration using the Raman scatter peak of water. Applied Spectroscopy Society for Applied Spectroscopy 63: 936–940.CrossRefGoogle Scholar
  29. Lee, T. T., T. Takeuchi & K. Yokoyama, 1994. In vivo fluorometric method for early detection of cyanobacterial water blooms. Journal of Applied Phycology 6: 489–495.CrossRefGoogle Scholar
  30. Lee, T., M. Tsuzuki, T. Takeuchi, K. Yokoyama & I. Karube, 1995. Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetric method. Analytica Chimica Acta 302: 81–87.CrossRefGoogle Scholar
  31. Lewitus, A. J., R. A. Horner, D. A. Caron, E. Garcia-Mendoza, B. M. Hickey, M. Hunter, D. D. Huppert, R. M. Kudela, G. W. Langlois, J. L. Largier, E. J. Lessard, R. RaLonde, J. E. Jack Rensel, P. G. Strutton, V. L. Trainer & J. F. Tweddle, 2012. Harmful algal blooms along the North American west coast region: history, trends, causes, and impacts. Harmful Algae 19: 133–159.CrossRefGoogle Scholar
  32. Marion, J. W., J. Lee, J. R. Wilkins, S. Lemeshow, C. Lee, E. J. Waletzko & T. J. Buckley, 2012. In vivo phycocyanin flourometry as a potential rapid screening tool for predicting elevated microcystin concentrations at eutrophic lakes. Environmental Science & Technology 46: 4523–4531.CrossRefGoogle Scholar
  33. McQuaid, N., A. Zamyadi, M. Prevost, D. F. Bird & S. Dorner, 2011. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. Journal of Environmental Monitoring 13: 455–463.CrossRefPubMedGoogle Scholar
  34. Merel, S., D. Walker, R. Chicana, S. Snyder, E. Baurès & O. Thomas, 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International 59: 303–327.CrossRefPubMedGoogle Scholar
  35. Nichols, H. W., 1973. Handbook of Phycological Methods. Cambridge University Press, Cambridge.Google Scholar
  36. O’Neil, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.CrossRefGoogle Scholar
  37. Paerl, H. W. & V. J. Paul, 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363.CrossRefPubMedGoogle Scholar
  38. Parmar, A., N. K. Singh, R. Dhoke & D. Madamwar, 2013. Influence of light on phycobiliprotein production in three marine cyanobacterial cultures. Acta Physiologiae Plantarum 35: 239–252.CrossRefGoogle Scholar
  39. Seppälä, J., P. Ylöstalo, S. Kaitala, S. Hällfors, M. Raateoja & P. Maunula, 2007. Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuarine, Coastal and Shelf Science 73: 489–500.CrossRefGoogle Scholar
  40. Simis, S. G., Y. Huot, M. Babin, J. Seppala & L. Metsamaa, 2012. Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria. Photosynthesis Research 112: 13–30.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Srivastava, A., S. Singh, C. Y. Ahn, H. M. Oh & R. K. Asthana, 2013. Monitoring approaches for a toxic cyanobacterial bloom. Environmental Scientific Technology 47: 8999–9013.CrossRefGoogle Scholar
  42. Vidal, L. & C. Kruk, 2008. Cylindrospermopsis raciborskii (Cyanobacteria) extends its distribution to latitude 34°53′S: taxonomical and ecological features in Uruguayan eutrophic lakes. Pan-American Journal of Aquatic Sciences 3: 142–151.Google Scholar
  43. Watras, C. J. & A. L. Baker, 1988. Detection of planktonic cyanobacteria by tandem in vivo fluorometry. Hydrobiologia 169: 77–84.CrossRefGoogle Scholar
  44. WHO, 2003. Algae and cyanobacteria in fresh water guidelines for safe recreational water environments. World Health Organization, Geneva: 136–158.Google Scholar
  45. Zamyadi, A., N. McQuaid, M. Prévost & S. Dorner, 2012. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. Journal of Environmental Monitoring 14: 579–588.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Inês P. E. Macário
    • 1
    • 2
  • Bruno B. Castro
    • 1
    • 2
  • Maria I. S. Nunes
    • 2
    • 3
  • Sara C. Antunes
    • 2
    • 4
  • Cristina Pizarro
    • 5
  • Carla Coelho
    • 5
  • Fernando Gonçalves
    • 1
    • 2
  • Daniela R. de Figueiredo
    • 1
    • 2
  1. 1.Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.Centre for Environmental and Marine Studies (CESAM)University of AveiroAveiroPortugal
  3. 3.Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  4. 4.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
  5. 5.Water and Soil Unit, Environmental Health DepartmentNational Health Institute Dr. Ricardo Jorge (INSA)PortoPortugal

Personalised recommendations