, Volume 755, Issue 1, pp 89–105 | Cite as

Alternation of diatoms and coccolithophores in the north-eastern Black Sea: a response to nutrient changes

  • Alexander S. Mikaelyan
  • Larisa A. Pautova
  • Valeriy K. Chasovnikov
  • Sergey A. Mosharov
  • Vladimir A. Silkin
Primary Research Paper


In many regions phosphorus limits coccolithophore growth, whereas nitrogen generally controls development of diatoms. We tested the hypothesis that a change in nutrient composition defines the alternation of these algae. Data on phytoplankton, nutrients, chlorophyll and primary production were obtained in May–June from 2002 to 2012. Coccolithophore bloom dynamics were analysed using satellite images of particular inorganic carbon (PIC). In some years coccolithophore bloom occupied the sea interior and has spread on shelf areas. Most frequently blooms occurred in the coastal waters and were absent in the deep basin. Diatoms and coccolithophores interchangeably prevailed in phytoplankton. In the coastal waters, high biomass of diatoms corresponded to the increased ammonium. In the deep basin, PIC was positively correlated with phosphate and negatively with the sea air temperature in February indicating that the bottom-up flux of pycnocline waters during winter convection is the main driver of coccolithophore bloom. In the coastal zone, high concentrations of phosphate and PIC corresponded to high precipitation periods. Thus, independent from origin, phosphorus might have determined the development of coccolithophores both in the coastal and deep waters. In general, diatoms predominated in phytoplankton at high nitrogen:phosphorus ratio, whereas coccolithophores at low.


Phytoplankton Diatoms Coccolithophores Interannual dynamics Nutrients Precipitation Black Sea 



This work was partly financially supported by EU-funded projects PERSEUS (Contract No. 287600), COCCONET (Contract No. 287844) and Russian Foundation for Basic Research (Grants No. 13-05-00029). The authors are grateful to anonymous referee for very valuable critical comments and the editing of the paper.

Supplementary material

10750_2015_2219_MOESM1_ESM.jpg (276 kb)
Supplementary material 1 (JPG 276 kb)
10750_2015_2219_MOESM2_ESM.tif (157 kb)
Supplementary material 2 (TIF 156 kb)


  1. Bodeanu, N., 2002. Algal blooms in Romania Black Sea waters in the last two decades of the XX Century. Cercetari Marine, IRCM Constanta 34: 7–22.Google Scholar
  2. Bodeanu, N., C. Andrei, L. Boicenco, L. Popa & A. Sburlea, 2004. A new trend of the phytoplankton structure and dynamics in the Romanian marine waters. Recherches Marines 35: 77–86.Google Scholar
  3. Bordovskiy, O. K. & A. M. Chernyakova (eds), 1992. Modern Methods of the Ocean Hydrochemical Investigations. P.P.Shirshov Institute of Oceanology, Moscow. (in Russian).Google Scholar
  4. Burenkov, V. I., O. V. Kopelevich & S. V. Sheberstov, 2011. Seasonal and interannual variations of the biooptical characteristics of the Black Sea from satellite data. Current Problems of Remote Sensing from Space 8: 190–199. (in Russian).Google Scholar
  5. Chasovnikov, V. K., E. Yakushev, N. M. Menshikova, V. P. Chzy & N. L. Kuprikova, 2011. Variability of nutrients in the coastal zone of the Black Sea. In Esin, N. V. & B. S. Lomazov (eds), Multidisciplinary Studies in the Black Sea. Nauchny Mir, Moscow: 255–268. (in Russian).Google Scholar
  6. Cokacar, T., N. Kubilay & T. Oguz, 2001. Structure of Emiliania huxleyi blooms in the Black Sea surface waters as detected by SeaWIFS imagery. Geophysical Research Letters 28: 4607–4610.CrossRefGoogle Scholar
  7. Cokacar, T., T. Oguz & N. Kubilay, 2004. Satellite-detected early summer coccolithophore blooms and their interannual variability in the Black Sea. Deep-Sea Research I 54: 1017–1031.CrossRefGoogle Scholar
  8. Dortch, Q., 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Marine Ecology Progress Series 61: 181–203.CrossRefGoogle Scholar
  9. Eker-Develi, E. & A. E. Kideys, 2003. Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998. Journal of Marine Systems 39: 203–211.CrossRefGoogle Scholar
  10. Eppley, R. W., J. N. Rogers & J. J. McCarthy, 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnology & Oceanography 14: 912–920.CrossRefGoogle Scholar
  11. Finenko, Z. Z., V. V. Syslin & T. Ya. Churilova, 2009. The regional model to calculate the Black Sea primary production using satellite color scanner SeaWiFS. Morski Ecological Journal 8: 81–106.Google Scholar
  12. Georgieva, L. V., 1993. Phytoplankton. Species composition and dynamics. In Kovalev, A. V. & Z. Z. Finenko (eds), Plankton of the Black Sea. Naukova Dymka, Kiev: 31–55. (in Russian).Google Scholar
  13. Georgieva, L. V. & L. G. Senichkina, 1996. Phytoplankton of the Black Sea: current research and prospects. Ekologiya Morya 45: 6–12. (in Russian).Google Scholar
  14. Grashoff, K., K. Kremling & M. Ehrhard, 1999. Methods of Seawater Analysis. Wiley-VCH, Weinheim-NewYork-Chichester-Brisbane-Singapore-Toronto.CrossRefGoogle Scholar
  15. Gvarishvili, T., 1988. Species composition and biodiversity of Georgian Black Sea phytoplankton. In Kollyakov, V., M. Uppenbrink & V. Metreveli (eds), Conservation of the Biological Diversity as a Prerequisite for Sustainable Development in the Black Sea Region, Vol. 46. Kluwer Academic Publishers, Dordrecht: 95–100.Google Scholar
  16. Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 438–447.CrossRefGoogle Scholar
  17. Iglesias-Rodrigez, M. D., C. W. Brown, S. C. Doney, J. Kleypas, D. Kolber, Z. Kolber, P. K. Hayes & P. G. Falkowski, 2002. Representing key phytoplankton functional groups in ocean cycle models: Coccolithophorids. Global Biogeochemical Cycles 16: 1–20.CrossRefGoogle Scholar
  18. Jaoshvili, S., 2002. The rivers of the Black Sea. In Khomerki, I., G. Gigineishvili & A. Kordzadze (eds), European Environment Agency, Technical Report 71: 1–58.Google Scholar
  19. JGOFS-protocols, 1994. In Protocols for the joint global ocean flux study (JGOFS) core measurements, manuals and guides, UNESCO 29: 119–122.Google Scholar
  20. Kokurkina, E. V. & A. S. Mikaelyan, 1994. Composition and distribution of picocyanobacteria in the Black Sea in winter. Oceanology 34: 67–72.Google Scholar
  21. Kopelevich, O. V., V. I. Burenkov & S. V. Sheberstov, 2008. Case studies of optical remote sensing in the Barents Sea, Black Sea, and Caspian Sea. In Barale, V. & M. Grade (eds), Remote Sensing of the European Seas. Springer, Dordrecht: 53–66.CrossRefGoogle Scholar
  22. Kopelevich, O. V., V. I. Burenkov, S. V. Sheberstov & S.V. Vazyulya, 2012. Remote sensing of coccolithophore particles: regional features. PiE 2012. Particles in Europe. Program and Abstract Volume, ICM, Barcelona, Spain [available on internet at].
  23. Kopelevich, O. V., V. I. Burenkov, S. V. Sheberstov, S. V. Vazyulya, M. Kravchishina, L. A. Pautova, V. A. Silkin, V. Artemiev & A. Grigoriev, 2014. Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data. Remote Sensing of the Environment 146: 113–123.CrossRefGoogle Scholar
  24. Korotaev, G., T. Oguz, A. Nikiforov & C. Koblinsky, 2003. Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. Journal of Geophysical Research-Oceans 108: 3122.CrossRefGoogle Scholar
  25. Krivenko, O. V., 2008. Contents and uptake of inorganic nitrogen in the Black Sea. Morski Ecological Journal VII: 13–26. (in Russian).Google Scholar
  26. Krylenko, V. V., R. D. Kosyan, M. V. Krylenko & I. S. Podymov, 2014. Transport of the solid material into the coastal zone near Gelendzhik as a result of extremely heavy rain. Oceanology 54: 97–104.CrossRefGoogle Scholar
  27. Lessard, E. J., A. Merico & T. Tyrell, 2005. Nitrate: phosphate ratios and Emiliania huxleyi blooms. Limnology & Oceanography 50: 1020–1024.CrossRefGoogle Scholar
  28. Litchman, E., C. A. Klausmeier, J. R. Miller, O. M. Schofield & P. G. Falkowski, 2006. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences 3: 585–606.CrossRefGoogle Scholar
  29. Lukashev, Y. F. & N. V. Shenderov, 1998. The role of the river discharge in the formation of the nutrient regime in the coastal zone of the Russian part of the Black Sea. Oceanology 38: 554–556.Google Scholar
  30. Mashtakova, G. P., 1985. Long-term changes of phytoplankton in the eastern part of the Black Sea. In Fishery and Oceanographic studies of the Black Sea. Nauka, Moscow 27: 50–61 (in Russia).Google Scholar
  31. Medinets, S. & V. Medinets, 2012. Investigations of atmospheric wet and dry nutrient deposition to marine surface in western part of the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences 12: 497–505.CrossRefGoogle Scholar
  32. Mikaelyan, A. S., V. A. Silkin & L. A. Pautova, 2011. Coccolithophorids in the Black Sea: their interannual and long-term changes. Oceanology 51: 39–48.CrossRefGoogle Scholar
  33. Mikaelyan, A. S., A. G. Zatsepin & V. K. Chasovnikov, 2013. Long-term changes in nutrient supply of phytoplankton growth in the Black Sea. Journal of Marine System 117–118: 53–64.CrossRefGoogle Scholar
  34. Moncheva, S. & A. Krastev, 1997. Phytoplankton long term alterations off Bulgarian Black Sea shelf. In Ozsoy, E. & A. S. Mikaelyan (eds), Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht: 79–93.CrossRefGoogle Scholar
  35. Moncheva, S., O. Gotsis-Skretas, K. Pagou & A. Krastev, 2001. Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuarine, Coastal and Shelf Science 53: 281–295.CrossRefGoogle Scholar
  36. Moncheva, S., S. Gorinstein, G. Shtereva, F. Toledo, P. Arancibia, W. A. Booth, I. Goshev, M. Weisz & S. Trakhtenberg, 2003. Seasonal variability of phytoplankton at Varna Bay (Black Sea). Phytochemical Analysis 14: 245–250.PubMedCrossRefGoogle Scholar
  37. Morozova-Vodyanitskaya, N. V. & E. V. Belogorskaya, 1957. About meaning of coccolithophorids and especially Pontosphaera in the Black Sea. Trudi of Sevstopol Biological Station IX: 14–21 (in Russian).Google Scholar
  38. Morozova-Vodyanitskaya, N. V., 1957. Phytoplankton in the Black Sea and its quatitative development. Trudi of Sevstopol Biological Station IX: 1–13 (in Russian).Google Scholar
  39. Nezlin, N. P. & V. Yu. Dyakonov, 1998. Seasonal and interaanual variations of surface chlorophyll concentration in the Black Sea. In Ivanov, L. & T. Oguz (eds), Ecosystem Modelling as a Management Tool for the Black Sea. Kluwer Academic Publishers, Dordrecht: 137–150.Google Scholar
  40. Oguz, T., 2008. General oceanographic properties: physico-chemical and climatic features. In Oguz, T. (Ed.), State of the Environment of the Black Sea (2001–2006/7). BSC, Istanbul: 39–60.Google Scholar
  41. Oguz, T., V. Velikova, A. Cosiasu & A. Korchenko, 2008. The state of eutrophication. In Oguz, T. (Ed.), State of the Environment of the Black Sea (2001–2006/2007). BSC, Istanbul: 83–112.Google Scholar
  42. Pakhomova, S., E. Vinogradova, E. Yakushev, A. Zatsepin, G. Shtereva, V. Chasovnikov & O. Podymov, 2014. Interannual variability of the Black Sea proper oxygen and nutrients regime: the role of climatic and anthropogenic forcing. Estuarine, Coastal and Shelf Science 140: 134–145.CrossRefGoogle Scholar
  43. Pautova, L. A., A. S. Mikaelyan & V. A. Silkin, 2007. Structure of plankton phytocoenoses in the shelf waters of the northeastern Black Sea during the Emiliania huxleyi bloom in 2002–2005. Oceanology 47: 477–480.CrossRefGoogle Scholar
  44. Rat’kova, T. N., 1989. Phytoplankton of the open areas of the Black Sea. In Vinogradov, M. E. & M. V. Flint (eds), Structure and Production Characteristics of the Black Sea Plankton Communities. Nauka, Moscow: 38–52. (in Russian).Google Scholar
  45. Riegman, R., W. Stolte, A. A. M. Noordeloos & D. Slezak, 2000. Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. Journal of Phycology 36: 87–96.CrossRefGoogle Scholar
  46. Sahin, F., L. Bat, F. Ustun, Z. Birinci Ozdemir, H. H. Satilmis, A. E. Kideys & E. Eker Develi, 2007. The dinoflagellate-diatom ratio in the southern Black Sea off Sinop in the years 1999-2000. Rapport Commission International Mer Mediterranee 38: 388.Google Scholar
  47. Sapozhnikov, V. V., 1990. Ammonia in the Black Sea. Oceanology 38: 53–58.Google Scholar
  48. Senicheva, M. I., 1980. Seasonal dynamics of the phytoplankton number, biomass and production in the Sevastopol Bay. Ekologiya Morya 1: 3–11. (in Russia).Google Scholar
  49. Sheberstov, S. V. & E. A. Lucanova, 2007. A system for acquisition, processing and storage of satellite and field biooptical data. In Proceedings of IY International Conference: current problems on optics of natural waters. Nizhny Novgorod: 179–183.Google Scholar
  50. Silkin, V. A., L. A. Pautova & A. S. Mikaelyan, 2009. Role of phosphorus in regulation of Emiliania huxleyi (Lohm.) Hay et Mohl. (Haptophyta) blooms in the northeastern Black Sea. International Journal on Algae 11: 211–221.CrossRefGoogle Scholar
  51. Silkin, V. A., L. A. Pautova, S. V. Pakhomova, A. V. Lifanchuk, E. V. Yakushev & V. K. Chasovnikov, 2014. Environmental control on phytoplankton community structure in the NE Black Sea. Journal of Experimental Marine Biology and Ecology 461: 267–274.CrossRefGoogle Scholar
  52. Steemann Nielsen, E., 1952. The use of radioactive carbon (C14) for measuring organic production in the sea. Journal du Conseil Permanent International pour l’Exploration de la Mer 18: 117–140.CrossRefGoogle Scholar
  53. Sukhanova, I. N. & T. N. Rat’kova, 1977. A comparison of the abundance of phytoplankton in samples collected by the double filtration method and standard settling technique. Oceanology 17: 691–693.Google Scholar
  54. Sukhanova, I. N., A. S. Mikaelyan & L. V. Georgieva, 1991. Spatial distribution and temporal variability of the Black Sea phytoplankton in spring (March–April 1988). In Agapova, I. Ya. (Ed.), Studies of phytoplankton in system of monitoring of the Baltic and other seas of USSR. Hydrometeoizdat, Moscow: 86–96 (in Russian).Google Scholar
  55. Titov, V. B., 2004. Formation of the upper convective layer and the cold intermediate layer in the Black Sea in relation to the winter severity. Oceanology 44: 327–330.Google Scholar
  56. Tomas, C. R. (Ed.), 1997. Identifying Marine Phytoplankton. Academic Press, San-Diego.Google Scholar
  57. Vasiliu, D., L. Boicenco, M. T. Gomoiu, L. Lazar & M. E. Mihailov, 2012. Temporal variation of surface chlorophyll a in the Romanian near-shore waters. Mediterranean Marine Science 13(2): 213–226.CrossRefGoogle Scholar
  58. Vedernikov, V. I., 1976. Effect of environmental factors on the values of assimilation number in natural populations of marine phytoplankton. Trudi of Oceanologia, IO RAN, Moscow 105: 106–129 (in Russian).Google Scholar
  59. Vedernikov, V. I. & A. S. Mikaelyan, 1989. Structural and functional characters of the different size groups of the Black Sea phytoplankton. In Vinogradov, M. E. & M. V. Flint (eds), Structure and Production Characteristics of the Black Sea Plankton Communities. Nauka, Moscow: 84–104. (in Russian).Google Scholar
  60. Yayla, M., A. Yilmaz & E. Morkoc, 2001. The dynamics of nutrient enrichment and primary production related to recent changes in the ecosystem of the Black Sea. Aquatic Ecosystem Health and Management Society 4: 31–49.Google Scholar
  61. Yunev, O. A., S. Moncheva & J. Carstensen, 2005. Long-term variability of vertical chlorophyll a and nitrate profiles in the open Black Sea: eutrophication and climate change. Marine Ecology Progress Series 294: 95–107.CrossRefGoogle Scholar
  62. Yunev, O. A., J. Carstensen, S. Moncheva, A. Khaliulin, G. Ærtebjerg & S. Nixon, 2007. Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes. Estuarine, Coastal and Shelf Science 74: 63–76.CrossRefGoogle Scholar
  63. Zaitsev, Yu. & V. Mamaev, 1997. Marine Biological Diversity in the Black Sea: A Study of Change and Decline. GEF Black Sea Environmental Programme, United Nations Publications, New York.Google Scholar
  64. Zatsepin, A. G., A. I. Ginzburg, A. G. Kostianoy, V. V. Kremenetskiy, V. G. Krivosheya, P. M. Poulain & S. V. Stanichny, 2003. Observation of Black Sea mesoscale eddies and associated horizontal mixing. Journal of Geophysical Research 108: 1–27.CrossRefGoogle Scholar
  65. Zavialov, P. O., P. N. Makkaveev, B. V. Konovalov, A. A. Osadchiev, P. V. Khlebopashev, V. V. Pelevin, A. B. Grabovskiy, A. S. Izhitskiy, I. V. Goncharenko, D. M. Soloviev & A. A. Polukhin, 2014. Hydrophysical and hydrochemical characteristics of the sea areas adjacent to the estuaries of small rivers of the Russian coast of the Black Sea. Oceanology 54: 293–308.CrossRefGoogle Scholar
  66. Zhang, Q. & G. Hu, 2011. Effect on nitrogen to phosphorus ratios on cell proliferation in marine micro algae. Chinese Journal of Oceanology & Limnology 29: 739–745.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexander S. Mikaelyan
    • 1
  • Larisa A. Pautova
    • 1
  • Valeriy K. Chasovnikov
    • 2
  • Sergey A. Mosharov
    • 1
  • Vladimir A. Silkin
    • 2
  1. 1.P.P. Shirshov Institute of Oceanology RASMoscowRussia
  2. 2.Southern Branch of P.P. Shirshov Institute of Oceanology RASGelendzhikRussia

Personalised recommendations