, Volume 755, Issue 1, pp 1–12 | Cite as

Lowhead dams and the downstream dispersal of zebra mussels

  • Benjamin R. Smith
  • David R. Edds
  • Jason M. Goeckler
Primary Research Paper


In rivers of the upper Neosho basin, Kansas, USA, lowhead dams influence the downstream dispersal of zebra mussels (Dreissena polymorpha). We quantified density of planktonic zebra mussel larvae and abundance of recruited individuals at 13 sites in this river–reservoir system to examine potential effects of four lowhead dams on dispersal dynamics of this invasive species. Density and abundance declined downstream from reservoir sources but repeatedly increased at sites inundated by lowhead dams compared to free-flowing areas, with colonization extending 189 river-km. The pattern of zebra mussel dispersal in these rivers is best described by the downstream-march model, with lowhead dams acting as stepping stones. Even though these zebra mussel populations are likely not self-recruiting behind lowhead dams, reproduction at these dams could lead to recruitment downstream. Thus, in rivers with lowhead dams, control of zebra mussel metapopulations may not be accomplished solely by limiting source–sink dynamics from upstream infested lakes.


Aquatic Invasive Zebra mussel Dreissena polymorpha Dispersal Dam River 



Funding for this project was provided by the Kansas Department of Wildlife, Parks and Tourism’s (KDWPT) Aquatic Nuisance Species Program, and the United States Fish and Wildlife Service through the Kansas Aquatic Nuisance Species Management Plan Grant. We thank Emporia State University for providing a Graduate Student Research Grant to B. Smith and a Faculty Research and Creativity Grant to D. Edds. We thank S. Delmott, D. McCullough, and N. Holoubek for assistance in the field, D. Moore for advice on study design, B. Thomas for lab space, and M. Sundberg for microscopy training.

Conflict of interest

All of the attributed authors of this article contributed significantly to the development of this article. Publication of this article would not implicate any conflict of interest to any of the attributed authors.


  1. Allen, Y. C. & C. W. Ramcharan, 2001. Dreissena distribution in commercial waterways of the U.S.: using failed invasions to identify limiting factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 898–907.CrossRefGoogle Scholar
  2. Bobeldyk, A. M., J. M. Bossenbroek, M. A. Evans-White, D. M. Lodge & G. A. Lamberti, 2005. Secondary spread of zebra mussels (Dreissena polymorpha) in coupled lake-stream systems. Ecoscience 12: 339–346.CrossRefGoogle Scholar
  3. Carlton, J. T., 1993. Dispersal mechanisms of the zebra mussel (Dreissena polymorpha). In Nalepa, T. F. & D. W. Schoesser (eds), Zebra mussels: biology, impacts, and control. Lewis/CRC Inc., Boca Raton, Florida: 677–697.Google Scholar
  4. Chick, J. H., A. P. Levchuk, K. A. Medley & J. H. Havel, 2010. Underestimation of rotifer abundance a much greater problem than previously appreciated. Limnology and Oceanography: Methods 8: 79–87.CrossRefGoogle Scholar
  5. Cumming, G. S., 2004. The impact of low-head dams on fish species richness in Wisconsin, USA. Ecological Applications 14: 1495–1506.CrossRefGoogle Scholar
  6. Cummins, K. E., 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. American Midland Naturalist 67: 477–504.CrossRefGoogle Scholar
  7. Dayton, P. K., 1998. Reversal of the burden of proof in fisheries management. Science 279: 821–822.CrossRefGoogle Scholar
  8. Dean, J., D. Edds, D. Gillette, J. Howard, S. Sherraden & J. Tiemann, 2002. Effects of lowhead dams on freshwater mussels in the Neosho River, Kansas. Transactions of the Kansas Academy of Science 105: 232–240.CrossRefGoogle Scholar
  9. Delmott, S. E. & D. R. Edds, 2014. Zebra mussel maturation and seasonal gametogenesis in Marion Reservoir, Kansas, USA. BioInvasions Records 3: 247–260.CrossRefGoogle Scholar
  10. Gillette, D. P., J. S. Tiemann, D. R. Edds & M. L. Wildhaber, 2005. Spatiotemporal patterns of fish assemblages structure in a river impounded by low-head dams. Copeia 2005: 539–549.CrossRefGoogle Scholar
  11. Havel, J. E., C. E. Lee & M. J. Vander Zanden, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.CrossRefGoogle Scholar
  12. Horvath, T. G., G. A. Lamberti, D. M. Lodge & W. L. Perry, 1996. Zebra mussel dispersal in lake-stream systems: source–sink dynamics? Journal of the North American Benthological Society 15: 564–575.CrossRefGoogle Scholar
  13. Johnson, L. E., 1995. Enhanced early detection and enumeration of zebra mussel (Dreissena spp.) veligers using cross-polarized light microscopy. Hydrobiologia 312: 139–146.CrossRefGoogle Scholar
  14. Johnson, L. E. & J. T. Carlton, 1996. Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel (Dreissena polymorpha). Ecology 77: 1686–1690.CrossRefGoogle Scholar
  15. Johnson, P. T. J., J. D. Olden & M. J. Vander Zanden, 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment 6: 357–363.CrossRefGoogle Scholar
  16. Kansas Department of Wildlife, Parks and Tourism, 2012. Kansas waters with aquatic nuisance species [available on internet at http://www.kdwpt.state.ks.us/news/Media/Files/PDF/Map-of-zebra-mussel-locations-in-Kansas].
  17. Keppner, H. T., D. J. Adrian & T. A. Ferro, 1997. Seasonal variations in dreissenid veliger density in the Niagara, Mississippi, and other selected rivers. In D’Itri, F. M. (ed.), Zebra mussels and aquatic nuisance species. Lewis, Boca Raton, Florida: 116–123.Google Scholar
  18. Kern, R., J. Borcherding & D. Neumann, 1994. Recruitment of a freshwater mussel with a planktonic life-stage in running waters—studies on Dreissena polymorpha in the River Rhine. Hydrobiologia 131: 385–400.Google Scholar
  19. Mackie, G. L., 1995. Adaptations of North American exotic Mollusca for life in regulated rivers and their potential impacts. In Hamilton, S. W., D. S. White, E. W. Chester & A. F. Scott (eds), Proceedings of the sixth symposium on the natural history of lower Tennessee and Cumberland river valleys. The Center for Field Biology, Austin Peay State University, Clarksville, Tennessee: 39–78.Google Scholar
  20. Marsden, J. E., 1992. Standard protocols for monitoring and sampling zebra mussels. Illinois Natural History Survey Biological Notes 138. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
  21. Martel, A., T. M. Hynes & J. Buckland-Nicks, 1995. Prodissoconch morphology, planktonic shell growth, and size at metamorphosis in Dreissena polymorpha. Canadian Journal of Zoology 73: 1835–1844.CrossRefGoogle Scholar
  22. Mulhern, D. W., B. K. Obermeyer & R. T. Angelo, 2002. Recent distributional records for freshwater mussels in Kansas. Transactions of the Kansas Academy of Science 105: 241–245.CrossRefGoogle Scholar
  23. Nichols, S. J. & M. G. Black, 1994. Identification of larvae: the zebra mussel (Dreissena polymorpha), quagga mussel (Dreissena rosteriformis bugensis), and Asian clam (Corbicula fluminea). Canadian Journal of Zoology 72: 406–417.CrossRefGoogle Scholar
  24. Orlova, M. I., 2010. Zebra and quagga mussels in the inland water of European Russia and adjacent countries. In Mackie, G. L. & R. Claudi (eds), Monitoring and control of macrofouling mollusks in fresh water systems, 2nd ed. CRC, Florida, Boca Raton: 371–386.Google Scholar
  25. Porto, L. M., R. L. McLaughlin & D. L. G. Noakes, 1999. Low-head barrier dams restrict the movements of fishes in two Lake Ontario streams. North American Journal of Fisheries Management 19: 1028–1036.CrossRefGoogle Scholar
  26. Schneider, D. W., C. D. Ellis & K. S. Cummings, 1998. A transportation model assessment of the risk to native mussel communities from zebra mussel spread. Conservation Biology 12: 788–800.CrossRefGoogle Scholar
  27. Shuman, J. R., 1995. Environmental considerations for assessing dam removal alternatives for river restoration. Regulated Rivers: Research & Management 11: 249–261.CrossRefGoogle Scholar
  28. Smith, B. R., 2013. Zebra mussels in the Neosho River basin: ecology and economics. Master’s thesis. Emporia State University, Emporia, Kansas.Google Scholar
  29. Sprung, M., 1989. Field and laboratory observations of Dreissena polymorpha larvae: abundance, growth, mortality and food demands. Archiv für Hydrobiologie 115: 537–561.Google Scholar
  30. Sprung, M., 1993. The other life: An account of present knowledge of the larval phase of Dreissena polymorpha. In Nalepa, T. F. & D. W. Schoesser (eds), Zebra Mussels: Biology, Impacts, and Control. Lewis/CRC Inc., Boca Raton, Florida: 39–53.Google Scholar
  31. Stanczykowska, A., 1977. Ecology of Dreissena polymorpha (Pall.) (Bivalvia) in lakes. Polish Archives of Hydrobiology 24: 461–530.Google Scholar
  32. Stoeckel, J. A., D. W. Schneider, L. A. Soeken, K. D. Blodgett & R. E. Sparks, 1997. Larval dynamics of a riverine metapopulation: implications for zebra mussel recruitment, dispersal, and control in a large-river system. Journal of the North American Benthological Society 16: 586–601.CrossRefGoogle Scholar
  33. Stoeckel, J. A., C. R. Rehmann, D. W. Schneider & D. K. Padilla, 2004. Retention and supply of zebra mussel larvae in a large river system: importance of an upstream lake. Freshwater Biology 49: 919–930.CrossRefGoogle Scholar
  34. Strayer, D. L., 1991. Projected distribution of the zebra mussel (Dreissena polymorpha) in North America. Canadian Journal of Fisheries and Aquatic Sciences 48: 1389–1395.CrossRefGoogle Scholar
  35. Tiemann, J. S., D. P. Gillette, M. L. Wildhaber & D. R. Edds, 2004. Effects of lowhead dams on riffle-dwelling fishes and macroinvertebrates in a Midwestern river. Transactions American Fisheries Society 133: 705–717.CrossRefGoogle Scholar
  36. Tiemann, J. S., D. P. Gillette, M. L. Wildhaber & D. R. Edds, 2005. Effects of lowhead dams on the ephemeropterans, plecopterans, and trichopterans group in a North American river. Journal of Freshwater Ecology 20: 519–525.CrossRefGoogle Scholar
  37. United States Army Corps of Engineers Environmental Laboratory, 2012. Zebra mussel information system [available on internet at http://el.erdc.usace.army.mil/zebra/zmis/zmishelp/veliger_analysis_techniques.htm].
  38. United States Geological Survey, 2012. NAS—nonindigenous aquatic species [available on internet at http://nas.er.usgs.gov/taxgroup/mollusks/zebramussel/].
  39. United States Geological Survey, 2013a. National water information system: web interface [available on internet at http://waterdata.usgs.gov/nwis/rt].
  40. Watters, G. T. & C. J. Myers Flaute, 2010. Dams, zebras, and settlements: the historical loss of freshwater mussels in the Ohio River mainstem. American Malacological Bulletin 28: 1–12.CrossRefGoogle Scholar
  41. Whittier, T. R., P. L. Ringold, A. T. Herlihy & S. M. Pearson, 2008. A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp.). Frontiers in Ecology and the Environment 6: 180–184.CrossRefGoogle Scholar
  42. Yan, Y., H. Wang, R. Zhu, L. Chu & Y. Chen, 2012. Influences of low-head dams on the fish assemblages in the headwater streams of the Qingyi watershed, China. Environmental Biology of Fishes 96: 495–506.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Benjamin R. Smith
    • 1
  • David R. Edds
    • 1
  • Jason M. Goeckler
    • 2
  1. 1.Department of Biological SciencesEmporia State UniversityEmporiaUSA
  2. 2.Emporia Research and Survey OfficeKansas Department of Wildlife, Parks and TourismEmporiaUSA

Personalised recommendations