, Volume 753, Issue 1, pp 81–95 | Cite as

The effects of a thermal discharge on the macroinvertebrate community of a large British river: implications for climate change

  • T. A. Worthington
  • P. J. Shaw
  • J. R. Daffern
  • T. E. L. Langford
Primary Research Paper


Anthropogenic changes to the temperature regimes of rivers, whether through thermal pollution, removal of shade, or climate change, could affect community stability and cause phenological changes in aquatic species. This study examines the impact of a thermal discharge from a power station on the diversity and composition of the aquatic macroinvertebrate community in the River Severn, UK. Daily temperatures up to 2 km downstream of the thermal discharge averaged 4.5°C above ambient. Abundance and taxon richness metrics were reduced at a site approximately 0.5 km downstream of the power station outfall, but were largely unaffected at a second site about 2 km downstream. The majority of the macroinvertebrate taxa observed were recorded at both control and heated sites, suggesting species were below their thermal tolerance threshold or had developed adaptations to survive increased temperatures. However, indicator species analysis suggests certain taxa were associated with particular sites; abundances of Musculium lacustre, Simulium reptans, and Orthocladiinae were greater at the unheated control site, whereas more pollution-tolerant species such Asellus aquaticus and Erpobdella octoculata were more common in the thermally impacted reaches. Overall, the results provide an indication of potential species and community response to future warming under climate change scenarios.


Climate change Macroinvertebrates Community composition Thermal pollution Taxonomic richness 



The research was funded by the Esmée Fairbairn Foundation (Grant Number: 091737). The authors wish to thank Dr. R. J. Aston and Dr. D. J. A. Brown for much assistance in the field and the referees for constructive and pertinent comments and suggestions.

Supplementary material

10750_2015_2197_MOESM1_ESM.pdf (705 kb)
Supplementary material 1 (PDF 706 kb)


  1. Aston, R. J., 1973. Tubificids and water quality: a review. Environmental Pollution 5: 1–10.CrossRefGoogle Scholar
  2. Aston, R. J. & D. J. A. Brown, 1975. Local and seasonal variations in populations of the leech Erpobdella octoculata (L) in a polluted river warmed by condenser effluents. Hydrobiologia 47: 347–366.CrossRefGoogle Scholar
  3. Aston, R. J. & A. G. P. Milner, 1980. A comparison of populations of the isopod Asellus aquaticus above and below power stations in organically polluted reaches of the River Trent. Freshwater Biology 10: 1–14.CrossRefGoogle Scholar
  4. Baker, S. C. & H. F. Sharp, 1998. Evaluation of the recovery of a polluted urban stream using the Ephemeroptera–Plecoptera–Trichoptera index. Journal of Freshwater Ecology 13: 229–234.CrossRefGoogle Scholar
  5. Bates, B. C., Z. W. Kundzewicz, S. Wu & J. P. Palutikof, 2008. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva.Google Scholar
  6. Bernotiene, R., 2013. The relationship between blackflies (Diptera: Simuliidae) and some hydrochemical and hydrophysical parameters in large and medium-sized Lithuanian rivers. River Research and Applications. doi: 10.1002/rra.2715.Google Scholar
  7. Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.CrossRefGoogle Scholar
  8. Brittain, J., 1977. The effect of temperature on the egg incubation period of Taeniopteryx nebulosa (Plecoptera). Oikos 29: 302–305.CrossRefGoogle Scholar
  9. Brittain, J., 1990. Life history strategies in Ephemeroptera and Plecoptera. In Campbell, I. C. (ed.), Mayflies and Stoneflies. Kluwer Academic Publishers, Dordrecht: 1–12.CrossRefGoogle Scholar
  10. Broadmeadow, S. B., J. G. Jones, T. E. L. Langford, P. J. Shaw & T. R. Nisbet, 2011. The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout. River Research and Applications 27: 226–237.CrossRefGoogle Scholar
  11. Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology 51: 1389–1406.CrossRefGoogle Scholar
  12. Chessman, B. C., 2009. Climatic changes and 13-year trends in stream macroinvertebrate assemblages in New South Wales, Australia. Global Change Biology 15: 2791–2802.CrossRefGoogle Scholar
  13. Conti, L., A. Schmidt-Kloiber, G. Grenouillet & W. Graf, 2014. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721: 297–315.CrossRefGoogle Scholar
  14. Dallas, H. F. & Z. A. Ketley, 2011. Upper thermal limits of aquatic macroinvertebrates: comparing critical thermal maxima with 96-LT50 values. Journal of Thermal Biology 36: 322–327.CrossRefGoogle Scholar
  15. Daufresne, M., M. C. Roger, H. Capra & N. Lamouroux, 2004. Long-term changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors. Global Change Biology 10: 124–140.CrossRefGoogle Scholar
  16. De Cáceres, M. & P. Legendre, 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566–3574.CrossRefPubMedGoogle Scholar
  17. De Cáceres, M., P. Legendre & M. Moretti, 2010. Improving indicator species analysis by combining groups of sites. Oikos 119: 1674–1684.CrossRefGoogle Scholar
  18. Diamond, S. E., A. M. Frame, R. A. Martin & L. B. Buckley, 2011. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92: 1005–1012.CrossRefPubMedGoogle Scholar
  19. Domisch, S., M. B. Araújo, N. Bonada, S. U. Pauls, S. C. Jähnig & P. Haase, 2013. Modelling distribution in European stream macroinvertebrates under future climates. Global Change Biology 19: 752–762.CrossRefPubMedGoogle Scholar
  20. Domisch, S., S. C. Jähnig & P. Haase, 2011. Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshwater Biology 56: 2009–2020.CrossRefGoogle Scholar
  21. Duda, A. M. & M. T. El-Ashry, 2000. Addressing the global water and environment crises through integrated approaches to the management of land, water and ecological resources. Water International 25: 115–126.CrossRefGoogle Scholar
  22. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.CrossRefPubMedGoogle Scholar
  23. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  24. Durance, I. & S. J. Ormerod, 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 13: 942–957.CrossRefGoogle Scholar
  25. Durance, I. & S. J. Ormerod, 2009. Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshwater Biology 54: 388–405.CrossRefGoogle Scholar
  26. Durrett, C. W. & W. D. Pearson, 1975. Drift of macroinvertebrates in a channel carrying heated water from a power plant. Hydrobiologia 46: 33–43.CrossRefGoogle Scholar
  27. Elliott, J. M., 1987. Egg hatching and resource partitioning in stoneflies: the six British Leuctra Spp. (Plecoptera: Leuctridae). Journal of Animal Ecology 56: 415–426.CrossRefGoogle Scholar
  28. Fey, J. M., 1977. The heating of a mountain stream and the effects on the zoocenosis demonstrated by the Lenne, Sauerland. Fundamental and Applied Limnology 53: 307–363.Google Scholar
  29. Ficke, A. D., C. A. Myrick & L. J. Hansen, 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17: 581–613.CrossRefGoogle Scholar
  30. Floury, M., P. Usseglio-Polatera, M. Ferreol, C. Delattre & Y. Souchon, 2013. Global climate change in large European rivers: long-term effects on macroinvertebrate communities and potential local confounding factors. Global Change Biology 19: 1085–1099.CrossRefPubMedGoogle Scholar
  31. Foster, D., F. Swanson, J. Aber, I. Burke, N. Brokaw, D. Tilman & A. Knapp, 2003. The importance of land-use legacies to ecology and conservation. Bioscience 53: 77–88.CrossRefGoogle Scholar
  32. Fournier, D. A., H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, A. Nielsen & J. Sibert, 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27: 233–249.CrossRefGoogle Scholar
  33. Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression, 2nd ed. SAGE Publications, Thousand Oaks, CA.Google Scholar
  34. Freeman, M. C. & P. A. Marcinek, 2006. Fish assemblage responses to water withdrawals and water supply reservoirs in Piedmont streams. Environmental Management 38: 435–450.CrossRefPubMedGoogle Scholar
  35. Friberg, N. & D. Jacobsen, 1999. Variation in growth of the detritivore-shredder Sericostoma personatum (Trichoptera). Freshwater Biology 42: 625–635.CrossRefGoogle Scholar
  36. Frost, S., A. Huni & W. E. Kershaw, 1971. Evaluation of a kicking technique for sampling stream bottom fauna. Canadian Journal of Zoology 49: 167–173.CrossRefGoogle Scholar
  37. Furse, M. T., J. F. Wright, P. D. Armitage & D. Moss, 1981. An appraisal of pond-net samples for biological monitoring of lotic macro-invertebrates. Water Research 15: 679–689.CrossRefGoogle Scholar
  38. Hahn, T., 2005. Respiration rates in Bithynia tentaculata (L.) (Gastropoda: Bithyniidae) in response to acclimation temperature and acute temperature change. Journal of Molluscan Studies 71: 127–131.CrossRefGoogle Scholar
  39. Haidekker, A. & D. Hering, 2008. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquatic Ecology 42: 463–481.CrossRefGoogle Scholar
  40. Hammond, D. & A. R. Pryce, 2007. Climate Change Impacts and Water Temperature. Environment Agency Science Report SC060017/SR Bristol, UK.Google Scholar
  41. Harding, J. S., E. F. Benfield, P. V. Bolstad, G. S. Helfman & E. B. D. Jones, 1998. Stream biodiversity: the ghost of land use past. Proceedings of the National Academy of Sciences 95: 14843–14847.CrossRefGoogle Scholar
  42. Hartigan, J. A. & M. A. Wong, 1979. A k-means clustering algorithm. Applied Statistics 28: 100–108.CrossRefGoogle Scholar
  43. Hawkes, H. A., 1956. The biological assessment of pollution in Birmingham streams. Journal of the Institute of Municipal Engineers 82: 425–436.Google Scholar
  44. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.CrossRefPubMedGoogle Scholar
  45. Hering, D., A. Schmidt-Kloiber, J. Murphy, S. Lücke, C. Zamora-Muñoz, M. López-Rodríguez, T. Huber & W. Graf, 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquatic Sciences 71: 3–14.CrossRefGoogle Scholar
  46. Hoang, H., F. Recknagel, J. Marshall & S. Choy, 2006. Elucidation of hypothetical relationships between habitat conditions and macroinvertebrate assemblages in freshwater streams by artificial neural networks. In Recknagel, F. (ed.), Ecological Informatics. Springer, Berlin: 239–251.CrossRefGoogle Scholar
  47. Hogg, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77: 395–407.CrossRefGoogle Scholar
  48. Hogg, I. D., D. D. Williams, J. M. Eadie & S. A. Butt, 1995. The consequences of global warming for stream invertebrates: a field simulation. Journal of Thermal Biology 20: 199–206.CrossRefGoogle Scholar
  49. Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.CrossRefPubMedGoogle Scholar
  50. Howells, G. D., 1983. The effects of power station cooling water discharges on aquatic ecology. Water Pollution Control 19: 10–17.Google Scholar
  51. Hrovat, M. & G. Urbanic, 2012. Life cycle of Rhyacophila fasciata Hagen, 1859 and Hydropsyche saxonica McLachlan, 1884 in a Dinaric karst river system. Aquatic Insects 34: 113–125.CrossRefGoogle Scholar
  52. Hulme, M., G. J. Jenkins, X. Lu, J. R. Turnpenny, T. D. Mitchell, R. G. Jones, J. Lowe, J. M. Murphy, D. Hassell, P. Boorman, R. McDonald & S. Hill, 2002. Climate Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich.Google Scholar
  53. Hynes, H. B. N., 1960. The Biology of Polluted Waters. Liverpool University Press, Liverpool.Google Scholar
  54. IPCC, 2013. Summary for policymakers. In Stocker, T. F., et al. (eds), Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  55. Jenkins, G. J., J. M. Murphy, D. M. H. Sexton, J. A. Lowe, P. Jones & C. G. Kilsby, 2009. UK Climate Projections: Briefing Report. Met Office Hadley Centre, Exeter.Google Scholar
  56. Jenkins, G. J., M. C. Perry & M. J. Prior, 2008. The Climate of the United Kingdom and Recent Trends. Met Office Hadley Centre, Exeter.Google Scholar
  57. Jenkins, M., 2003. Prospects for biodiversity. Science 302: 1175–1177.CrossRefPubMedGoogle Scholar
  58. Johnson, A. C., M. C. Acreman, M. J. Dunbar, S. W. Feist, A. M. Giacomello, R. E. Gozlan, S. A. Hinsley, A. T. Ibbotson, H. P. Jarvie, J. I. Jones, M. Longshaw, S. C. Maberly, T. J. Marsh, C. Neal, J. R. Newman, M. A. Nunn, R. W. Pickup, N. S. Reynard, C. A. Sullivan, J. P. Sumpter & R. J. Williams, 2009. The British river of the future: how climate change and human activity might affect two contrasting river ecosystems in England. Science of the Total Environment 407: 4787–4798.CrossRefPubMedGoogle Scholar
  59. Jones, A. F., M. G. Macklin & P. A. Brewer, 2012. A geochemical record of flooding on the upper River Severn, UK, during the last 3750 years. Geomorphology 179: 89–105.CrossRefGoogle Scholar
  60. Korhonen, A. I. & K. Y. H. Lagerspetz, 1996. Heat shock response and thermal acclimation in Asellus aquaticus. Journal of Thermal Biology 21: 49–56.CrossRefGoogle Scholar
  61. Langford, T., T. Worthington, P. Shaw, P. Kemp, C. Woolgar, A. Ferguson, P. Harding & D. Ottewell, 2012. The unnatural history of the River Trent: 50 years of ecological recovery. In Boon, P. J. & P. J. Raven (eds), River Conservation and Management. Wiley, Chichester: 261–272.CrossRefGoogle Scholar
  62. Langford, T. E. L., 1970. The temperature of a British river upstream and downstream of a heated discharge from a power station. Hydrobiologia 35: 353–375.CrossRefGoogle Scholar
  63. Langford, T. E. L., 1971. The distribution, abundance and life-histories of stoneflies (Plecoptera) and mayflies (Ephemeroptera) in a British river, warmed by cooling-water from a power station. Hydrobiologia 38: 339–377.CrossRefGoogle Scholar
  64. Langford, T. E. L., 1983. Electricity Generation and the Ecology of Natural Waters. Liverpool University Press, Liverpool.Google Scholar
  65. Langford, T. E. L., 1990. Ecological Effects of Thermal Discharges. Elsevier, London.Google Scholar
  66. Langford, T. E. L. & J. R. Daffern, 1975. The emergence of insects from a British river warmed by power station cooling-water. Hydrobiologia 46: 71–114.CrossRefGoogle Scholar
  67. Lenat, D. R., 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Journal of the North American Benthological Society 7: 222–233.CrossRefGoogle Scholar
  68. Magurran, A. E. & P. A. Henderson, 2003. Explaining the excess of rare species in natural species abundance distributions. Nature 422: 714–716.CrossRefPubMedGoogle Scholar
  69. Mouthon, J., 2004. Life cycle of Musculium lacustre (Bivalvia: Sphaeriidae) in the Saône river at Lyon (France): a curious life strategy. Annales de Limnologie – International Journal of Limnology 40: 279–284.CrossRefGoogle Scholar
  70. Mouthon, J. & M. Daufresne, 2006. Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saône: a large lowland river and of its two main tributaries (France). Global Change Biology 12: 441–449.CrossRefGoogle Scholar
  71. Nordlie, K. J. & J. W. Arthur, 1981. Effect of elevated water temperature on insect emergence in outdoor experimental channels. Environmental Pollution Series A, Ecological and Biological 25: 53–65.CrossRefGoogle Scholar
  72. Obrdlík, P., Z. Adámek & J. Zahrádka, 1979. Mayfly fauna (Ephemeroptera) and the biology of the species Potamanthus luteus (L.) in a warmed stretch of the Oslava River. Hydrobiologia 67: 129–140.CrossRefGoogle Scholar
  73. Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & R Development Core Team, 2013. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-113.Google Scholar
  74. Poff, N. L. & R. A. Matthews, 1986. Benthic macroinvertebrate community structural and functional group response to thermal enhancement in the Savannah River and a coastal plain tributary. Fundamental and Applied Limnology 106: 119–137.Google Scholar
  75. Poff, N. L., M. I. Pyne, B. P. Bledsoe, C. C. Cuhaciyan & D. M. Carlisle, 2010. Developing linkages between species traits and multiscaled environmental variation to explore vulnerability of stream benthic communities to climate change. Journal of the North American Benthological Society 29: 1441–1458.CrossRefGoogle Scholar
  76. R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
  77. Revenga, C., J. Brunner, N. Henninger, K. Kassem & R. Payne, 2000. Pilot Analysis of Global Ecosystems: Freshwater Systems. World Resources Institute, Washington, DC.Google Scholar
  78. Ricciardi, A. & J. B. Rasmussen, 1999. Extinction rates of North American freshwater fauna. Conservation Biology 13: 1220–1222.CrossRefGoogle Scholar
  79. Rotvit, L. & D. Jacobsen, 2013. Temperature increase and respiratory performance of macroinvertebrates with different tolerances to organic pollution. Limnologica – Ecology and Management of Inland Waters 43: 510–515.CrossRefGoogle Scholar
  80. Sahin, S. K., 2012. Gastropod species distribution and its relation with some physico-chemical parameters of the Malatya’s streams (East Anatolia, Turkey). Acta Zoologica Bulgarica 64: 129–133.Google Scholar
  81. Sala, O. E., F. Stuart Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.CrossRefPubMedGoogle Scholar
  82. Skaug, H., D. Fournier, A. Nielsen, A. Magnusson & B. Bolker, 2013. glmmADMB: Generalized Linear Mixed Models Using AD Model Builder. R Package Version 0.7.7.Google Scholar
  83. Tixier, G., K. Wilson & D. D. Williams, 2009. Exploration of the influence of global warming on the chironomid community in a manipulated shallow groundwater system. Hydrobiologia 624: 13–27.CrossRefGoogle Scholar
  84. Watts, G., R. Batterbee, J. P. Bloomfield, J. Crossman, A. Daccache, I. Durance, J. Elliot, G. Garner, J. Hannaford, D. M. Hannah, T. Hess, C. R. Jackson, A. L. Kay, M. Kernan, J. Knox, J. Mackay, D. T. Monteith, S. Ormerod, J. Rance, M. E. Stuart, A. J. Wade, S. D. Wade, K. Weatherhead, P. G. Whitehead & R. L. Wilby, 2013. Climate Change and Water in the UK: Past Changes and Future Prospects – A Climate Change Report Card for Water: Working Technical Paper. LWEC Partnership.Google Scholar
  85. Wellborn, G. A. & J. V. Robinson, 1996. Effects of a thermal effluent on macroinvertebrates in a central Texas reservoir. The American Midland Naturalist 136: 110–120.CrossRefGoogle Scholar
  86. Wilby, R. L., H. Orr, G. Watts, R. W. Battarbee, P. M. Berry, R. Chadd, S. J. Dugdale, M. J. Dunbar, J. A. Elliott, C. Extence, D. M. Hannah, N. Holmes, A. C. Johnson, B. Knights, N. J. Milner, S. J. Ormerod, D. Solomon, R. Timlett, P. J. Whitehead & P. J. Wood, 2010. Evidence needed to manage freshwater ecosystems in a changing climate: turning adaptation principles into practice. Science of the Total Environment 408: 4150–4164.CrossRefPubMedGoogle Scholar
  87. Wood, S. N., 2003. Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65: 95–114.CrossRefGoogle Scholar
  88. Wood, S. N., 2004. Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association 99: 673–686.CrossRefGoogle Scholar
  89. Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2093–2106.CrossRefGoogle Scholar
  90. Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), 2000. Assessing the Biological Quality of Fresh Waters: Rivpacs and other Techniques. Freshwater Biological Association, Ambleside.Google Scholar
  91. Zuur, A. F., 2012. A Beginner’s Guide to Generalized Additive Models with R. Highland Statistics Limited, Newburgh.Google Scholar
  92. Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.CrossRefGoogle Scholar
  93. Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • T. A. Worthington
    • 1
    • 2
    • 3
  • P. J. Shaw
    • 2
  • J. R. Daffern
    • 4
  • T. E. L. Langford
    • 2
  1. 1.Oklahoma Cooperative Fish and Wildlife Research UnitOklahoma State UniversityStillwaterUSA
  2. 2.Faculty of Engineering and the EnvironmentUniversity of Southampton, HighfieldSouthamptonUK
  3. 3.Department of BiologyUniversity of MarylandCollege ParkUSA
  4. 4.PresteigneUK

Personalised recommendations