, Volume 749, Issue 1, pp 125–134 | Cite as

Size-dependent feeding of omnivorous Nile tilapia in a macrophyte-dominated lake: implications for lake management

  • Weimin Rao
  • Jiajia Ning
  • Ping Zhong
  • Erik Jeppesen
  • Zhengwen Liu
Primary Research Paper


Some species or size classes of omnivorous/herbivorous fish in (sub) tropical lakes feed on periphyton and phytoplankton, potentially promoting growth of macrophytes via reduced shading. Others feed on macrophytes, thereby enhancing the risk of having a turbid phytoplankton-dominated system in shallow lakes. Nile tilapia (Oreochromis niloticus), an abundant species in many warm lakes, feed on periphyton, phytoplankton, and macrophytes depending on their size and may therefore have a size-dependent effect on lake ecosystems. We conducted a C–N stable isotope analysis on different size-classes of tilapia and their potential prey to determine their food sources in a tropical eutrophic shallow lake dominated by submerged macrophytes. The shares of the dominant macrophyte, Vallisneria natans, periphyton, and seston in the diet of fish averaged approx. 54, 26, and 20%, respectively. Large-bodied specimens fed mainly on macrophytes, while small-bodied specimens were more dependent on periphyton, seston, or detritus. The results were confirmed by subsequent stomach analysis. We conclude that small-sized tilapia promote macrophyte growth by removing periphyton and seston, whereas large-bodied individuals may restrict macrophyte development. Selective removal of large-bodied tilapia might, therefore, stimulate the development of submerged macrophytes and promote or maintain a clear water state in eutrophic shallow lakes with abundant tilapia.


Shallow lakes Macrophytes Periphyton Omnivorous fish Size-dependent feeding Regime shifts Eutrophication Lake restoration 



The authors thank Jinlei Yu, Xiaodan Di, Jian Gao, Jie Mao, Long Han, Teng Miao, Ruyan Yue, Jinrun Hu, Xuefeng Zhao, and Ping Li for field and laboratory support; and Anne Mette Poulsen for language assistance. This study was supported by the National Basic Research Program of China (No. 2012CB956100), and the National Foundation of Science of China (Nos. U1033602 and 41471086). EJ was supported by the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme—Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu), the Danish projects CIRCE, CRES, and CLEAR2 (a Villum Kann Rasmussen Centre of Excellence project).


  1. Ayliffe, L. K., T. E. Cerling, T. Robinson, A. G. West, M. Sponheimer, B. H. Passey, J. Hammer, B. Roeder, M. D. Dearing & J. R. Ehleringer, 2004. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139: 11–22.CrossRefPubMedGoogle Scholar
  2. Azim, M. E., M. C. J. Verdegem, I. Mantingh, A. A. Van Dam & M. C. M. Beveridge, 2003. Ingestion and utilization of periphyton grown on artificial substrates by Nile tilapia, Oreochromis niloticus L. Aquaculture Research 34: 85–92.CrossRefGoogle Scholar
  3. Balirwa, J. S., 1998. Lake Victoria Wetlands and the Ecology of the Nile tilapia, Oreochromis niloticus Linne. A. A. Balkema Publishers, Rotterdam.Google Scholar
  4. Barko, J. W. & W. F. James, 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes, Vol. 131., Ecological Studies Springer, New York: 59–87.CrossRefGoogle Scholar
  5. Beveridge, M. C. M. & D. J. Baird, 2000. Diet, feeding and digestive physiology. In Beveridge, M. C. M. & B. J. McAndrew (eds), Tilapias: Biology and Exploitation. Kluwer Academic Publishers, Dordrecht: 59–87.CrossRefGoogle Scholar
  6. Brucet, S., D. Boix, L. W. Nathansen, X. D. Quintana, E. Jensen, D. Balayla, M. Meerhoff & E. Jeppesen, 2012. Plant-associated macroinvertebrate community structure in shallow brackish lakes: role of climate, salinity and predation. PLos ONE 7: e30877.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Burks, R. L., G. Mulderij, E. Gross, I. Jones, L. Jacobsen, E. Jeppesen & E. Van Donk, 2006. Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In Bobbink, R., J. T. A. Verhoeven & D. E. Whigham (eds), Wetlands: Functioning, Biodiversity Conversation, and Restoration. Springer, Berlin: 37–59.CrossRefGoogle Scholar
  8. Carabel, S., E. Godínez-Domínguez, P. Verísimo, L. Fernández & J. Freire, 2006. An assessment of sample processing methods for stable isotope analyses of marine food webs. Journal of Experimental Marine Biology and Ecology 336: 254–261.CrossRefGoogle Scholar
  9. Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.CrossRefGoogle Scholar
  10. Castro, B. B., S. M. Marques & F. Gonçalves, 2007. Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases. Freshwater Biology 52: 421–433.CrossRefGoogle Scholar
  11. Cattaneo, A., 1983. Grazing on epiphytes. Limnology and Oceanography 28: 124–132.CrossRefGoogle Scholar
  12. Datta, S. & B. B. Jana, 1998. Control of bloom in a tropical lake: grazing efficiency of some herbivorous fishes. Journal of Fish Biology 53: 12–24.CrossRefGoogle Scholar
  13. Dempster, P. W., M. C. M. Beveridge & D. J. Baird, 1993. Herbivory in the tilapia Oreochromis niloticus: a comparison of feeding rates on phytoplankton and periphyton. Journal of Fish Biology 43: 385–392.CrossRefGoogle Scholar
  14. Doupe, R. G., M. J. Knott, J. Schaffer, D. W. Burrows & A. J. Lymbery, 2010. Experimental herbivory of native Australian macrophytes by the introduced Mozambique tilapia Oreochromis mossambicus. Austral Ecology 35: 24–30.CrossRefGoogle Scholar
  15. Figueredo, C. C. & A. Giani, 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology 50: 1391–1403.CrossRefGoogle Scholar
  16. Filzgerald, G. P., 1969. Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds. Journal of Phycology 5: 351–359.CrossRefGoogle Scholar
  17. Fry, B., 2006. Stable Isotope Ecology. Springer, Berlin.CrossRefGoogle Scholar
  18. Fryer, G. & T. D. Iles, 1972. The Cichlid Fishes of the Great Lakes of Africa: Their Biology and Evolution. Oliver and Boyd, Edinburgh.Google Scholar
  19. Gao, J., Z. Liu & E. Jeppesen, 2014. Fish community assemblages changed but biomass remained similar after lake restoration by biomanipulation in a Chinese tropical eutrophic lake. Hydrobiologia 724: 127–140.CrossRefGoogle Scholar
  20. Getabu, A., 1994. A comparative study on the feeding habits of Oreochromis niloticus (Linnaeus) in Nyanza Gulf Lake Victoria and sewage fish ponds. In Okemwa, E., E. Wakwabi & A. Getabu (eds), Proceedings of the Second EEC Regional Seminar on Recent Trends of Research on Lake Victoria Fisheries, Kisumu, September, Kenya, 1992. ICIPE Press, Nairobi: 25–27.Google Scholar
  21. Getachew, T., 1987. A study on an herbivorous fish, Oreochromis niloticus L., diet and its quality in two Ethiopian Rift Valley lakes, Awasa and Zwai. Journal of Fish Biology 30: 439–449.CrossRefGoogle Scholar
  22. Getachew, T. & C. H. Fernando, 1989. The food habits of an herbivorous fish (Oreochromis niloticus Linn.) in Lake Awasa, Ethiopia. Hydrobiologia 174: 195–200.CrossRefGoogle Scholar
  23. González-Bergonzoni, I., M. Meerhoff, T. A. Davidson, F. Teixeira-de Mello, A. Baattrup-Pedersen & E. Jeppesen, 2012. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15: 492–503.CrossRefGoogle Scholar
  24. Gu, B., C. L. Schelske & M. V. Hoyer, 1997. Intrapopulation feeding diversity in blue tilapia: evidence from stable-isotope analyses. Ecology 78: 2263–2266.Google Scholar
  25. Gupta, M. V. & B. O. Acosta, 2004. A review of global tilapia farming practices. Aquaculture Asia 9: 7–12.Google Scholar
  26. Hargeby, A., G. Andersson, I. Blindow & S. Johansson, 1994. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279: 83–90.CrossRefGoogle Scholar
  27. Hobson, K. A. & R. G. Clark, 1992. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. The Condor 94: 181–188.CrossRefGoogle Scholar
  28. Hyslop, E. J., 1980. Stomach contents analysis—a review of methods and their application. Journal of Fish Biology 17: 411–429.CrossRefGoogle Scholar
  29. Jeppesen, E., M. Søndergaard, E. Kanstrup, B. Peter-sen, R. B. Henriksen, M. Ham-mershøj, E. Mortensen, J. P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275–276: 15–30.CrossRefGoogle Scholar
  30. Jeppesen, E., J. P. Jensen, M. Søndergaard & T. Lauridsen, 1999. Trophic dynamics in turbid and clear water lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408: 217–231.CrossRefGoogle Scholar
  31. Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus, S. Egemose & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Research 47: 411–488.CrossRefGoogle Scholar
  32. Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), 1998. The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York.Google Scholar
  33. Jones, J. I. & C. D. Sayer, 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.CrossRefGoogle Scholar
  34. Jones, J. I., J. O. Young, J. W. Eaton & B. Moss, 2002. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. Journal of Ecology 90: 12–24.CrossRefGoogle Scholar
  35. Keenleyside, M. H. A., 1979. Diversity and Adaption in fish Behavior. Springer, New York.CrossRefGoogle Scholar
  36. King, D. R. & G. S. Hunt, 1967. Effect of carp on vegetation in a Lake Erie marsh. The Journal of Wildlife Management 31: 181–188.CrossRefGoogle Scholar
  37. Kolding, J., 1993. Population dynamics and life-history styles of Nile tilapia, Oreochromis niloticus, in Ferguson’s Gulf, Lake Turkana, Kenya. Environmental Biology of Fishes 37: 25–46.CrossRefGoogle Scholar
  38. Li, K., Z. Liu & B. Gu, 2008. Persistence of clear water in a nutrient-impacted region of Lake Taihu: the role of periphyton grazing by snails. Fundamental and Applied Limnology/Archiv für Hydrobiologie 173: 15–20.CrossRefGoogle Scholar
  39. Li, K., Z. Liu & B. Gu, 2009. Density-dependent effects of snail grazing on the growth of a submerged macrophyte, Vallisneria spiralis. Ecological Complexity 6: 438–442.CrossRefGoogle Scholar
  40. Lowe-McConnell, R. H., 1958. Observations on the biology of Tilapia nilotica Linné in East African waters. Revue de Zoologie et de Botanique Africaine 57: 129–170.Google Scholar
  41. Lu, J., T. Takeuchi & H. Satoh, 2004. Ingestion and assimilation of three species of freshwater algae by larval tilapia Oreochromis niloticus. Aquaculture 238: 437–449.CrossRefGoogle Scholar
  42. Lu, K., C. Jin, S. Dong, B. Gu & S. H. Bowen, 2006. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hydrobiologia 568: 111–120.CrossRefGoogle Scholar
  43. Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  44. Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. González Bergonzoni, J. P. Pacheco, G. Lacerot, M. Arim, M. Beklioglu, S. B. Balmana, G. Goyenola, C. Iglesias, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259–349.CrossRefGoogle Scholar
  45. Menezes, R. F., J. L. Attayde & F. R. Vasconcelos, 2010. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshwater Biology 55: 767–779.CrossRefGoogle Scholar
  46. Moriarty, C. M. & D. J. W. Moriarty, 1973a. Quantitative estimation of the daily ingestion of phytoplankton by Tilapia nilotica and Haplochromis nigripinnis in Lake George, Uganda. Journal of Zoology 171: 15–23.CrossRefGoogle Scholar
  47. Moriarty, D. J. W. & C. M. Moriarty, 1973b. The assimilation of carbon from phytoplankton by two herbivorous fishes Tilapia nilotica and Haplochromis nigripennis. Journal of the Zoological Society of London 171: 41–55.Google Scholar
  48. Moriarty, D. J. W., J. P. E. C. Darlington, I. G. Dunn, C. M. Moriarty & M. P. Tevlin, 1973. Feeding and grazing in Lake George, Uganda. Proceedings of the Royal Society of London Series B 184: 299–319.CrossRefGoogle Scholar
  49. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–378.CrossRefGoogle Scholar
  50. Njiru, M., A. Othina, A. Getabu, D. Tweddle & I. Cowx, 2002. Is the invasion of water hyacinth, Eichhornia crassipes Solms (Mart.), a blessing to Lake Victoria fisheries. In Cowx, I. (ed.), Management and Ecology of Lake and Reservoirs Fisheries. Fishing News Books, Blackwell Science, Oxford: 255–263.Google Scholar
  51. Northcott, M. E. & M. C. M. Beveridge, 1988. The development and structure of pharyngeal apparatus associated with filter feeding in tilapias (Oreochromis niloticus). Journal of Zoology 215: 133–149.CrossRefGoogle Scholar
  52. Northcott, M. E., M. C. M. Beveridge & L. G. Ross, 1991. A laboratory investigation of the filtration and ingestion rates of the tilapia, Oreochromis niloticus, feeding on two species of blue-green algae. Environmental Biology of Fishes 31: 75–85.CrossRefGoogle Scholar
  53. Perrow, M. R., A. J. D. Jowitt, J. H. Stansfield & G. L. Phillips, 1999. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration. Hydrobiologia 395(396): 199–210.CrossRefGoogle Scholar
  54. Phillips, D. L. & J. W. Gregg, 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–179.CrossRefPubMedGoogle Scholar
  55. Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.CrossRefGoogle Scholar
  56. Robinson, R. L., G. F. Turner, A. S. Grimm & T. J. Pitcher, 1990. A comparison of the ingestion rates of three tilapia species fed on a small planktonic alga. Journal of Fish Biology 36: 269–270.CrossRefGoogle Scholar
  57. Sand-Jensen, K. & M. Søndergaard, 1981. Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Internationale Revue der gesamten Hydrobiologie 66: 529–552.CrossRefGoogle Scholar
  58. Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.CrossRefGoogle Scholar
  59. Sheldon, S. P., 1987. The effects of herbivorous snails on submerged macrophyte communities in Minnesota lakes. Ecology 68: 1920–1931.CrossRefGoogle Scholar
  60. Smith, M. W., 1969. Changes in environment and biota of a natural lake after fertilization. Journal of the Fisheries Board of Canada 26: 3101–3132.CrossRefGoogle Scholar
  61. Starling, F. L. R. M., 1998. Development of biomanipulation strategies for the remediation of eutrophication problems in an urban reservoir, Lago Paranoa, Brazil. PhD Thesis, Institute of Aquaculture, University of Stirling.Google Scholar
  62. Starling, F., X. Lazzaro, C. Cavalcanti & R. Moreira, 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshwater Biology 47: 2443–2452.CrossRefGoogle Scholar
  63. Tieszen, L. L., T. W. Boutton, K. G. Tesdahl & N. A. Slade, 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57: 32–37.CrossRefGoogle Scholar
  64. Trewavas, E., 1983. Tilapiine species of the Genera Sarotherodon, Oreochromis and Danakila. London British Museum (Natural History) Publication No. 583. Unecia Ltd., Jinja Uganda.Google Scholar
  65. Turker, H., A. G. Eversole & D. E. Brune, 2003a. Comparative Nile tilapia and silver carp filtration rates of partitioned aquaculture system phytoplankton. Aquaculture 220: 449–457.CrossRefGoogle Scholar
  66. Turker, H., A. G. Eversole & D. E. Brune, 2003b. Filtration of green algae and cyanobacteria by Nile tilapia, Oreochromis niloticus, in the Partitioned Aquaculture System. Aquaculture 215: 93–101.CrossRefGoogle Scholar
  67. Van Donk, E., E. De Deckere, J. G. P. Breteler & J. T. Meulemans, 1994. Herbivory by waterfowl and fish on macrophytes in a biomanipulated lake: effects on long-term recovery. Verhandlungen der internationale Vereinigung der Limnologie 25: 2139.Google Scholar
  68. Van Donk, E. & A. Otte, 1996. Effects of grazing by fish and waterfowl on the biomass and species composition of submerged macrophytes. Hydrobiologia 340: 285–290.CrossRefGoogle Scholar
  69. Vanderstukken, M., N. Mazzeo, W. Van Colen, S. A. J. Declerck & K. Muylaert, 2011. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: a mesocosm study. Freshwater Biology 56: 1837–1849.CrossRefGoogle Scholar
  70. Welcomme, R., 1967. Observations on the biology of the introduced species of Tilapia in Lake Victoria. Revue de Zoologie et de Botanique Africaine 76: 249–279.Google Scholar
  71. Xu, H., S. Qiang, Z. Han, J. Guo, Z. Huang, H. Sun, S. He, H. Ding, H. Wu & F. Wan, 2006. The status and causes of alien species invasion in China. Biodiversity and Conservation 15: 2893–2904.CrossRefGoogle Scholar
  72. Yamaoka, K., 1991. Feeding relationships. In Keenleyside, M. H. A. (ed.), Cichlid Fishes: Behaviour, Ecology and Evolution. Chapman and Hall, London: 151–172.Google Scholar
  73. Yan, X., L. Zhenyu, W. P. Gregg & L. Dianmo, 2001. Invasive species in China—an overview. Biodiversity and Conservation 10: 1317–1341.CrossRefGoogle Scholar
  74. Yashouv, A. & J. Chervinski, 1961. The food of Tilapia nilotica in ponds of the fish culture research station at Dor. Bamidgeh 13: 33–99.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Weimin Rao
    • 1
  • Jiajia Ning
    • 1
  • Ping Zhong
    • 1
  • Erik Jeppesen
    • 3
    • 4
  • Zhengwen Liu
    • 1
    • 2
    • 4
  1. 1.Department of Ecology and Institute of HydrobiologyJinan UniversityGuangzhouChina
  2. 2.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & LimnologyChinese Academy of SciencesNanjingChina
  3. 3.Department of Bioscience and the Arctic CentreAarhus UniversitySilkeborgDenmark
  4. 4.Sino-Danish Center for Education and ResearchBeijingChina

Personalised recommendations