Advertisement

Hydrobiologia

, Volume 747, Issue 1, pp 147–157 | Cite as

Response of crayfish to hyporheic water availability and excess sedimentation

  • Joseph J. Dyer
  • Thomas A. Worthington
  • Shannon K. Brewer
Primary Research Paper

Abstract

Crayfish in many headwater streams regularly cope with seasonal drought. However, it is unclear how landscape changes affect the long-term persistence of crayfish populations. We designed two laboratory experiments to investigate the acute effects of common landscape stressors on crayfish: water withdrawal and sedimentation. The first experiment tested the interaction among water withdrawals (four 24-h water reductions of 0, 15, 30, or 45 cm) and two substrate treatments (pebble and cobble) on the burrowing depth of crayfish. The second experiment evaluated the effects of excess fine sediment (three treatments of 0, 45, and 90% sediment) and substrate type (cobble and pebble) on crayfish burrowing depth. Crayfish were able to burrow deeper into the simulated hyporheic zone in cobble substrate when compared to pebble. Crayfish subjected to greater water withdrawals in the pebble treatment were not able to reach the simulated hyporheic zone. Excess fine sediment reduced the depth that crayfish burrowed, regardless of substrate type. Results from this study suggest excess fine sediment may reduce crayfish persistence, particularly when seeking refuge during prolonged dry conditions.

Keywords

Stream drying Fine sediment Substrate Land use 

Notes

Acknowledgments

This research is a contribution of the Oklahoma Cooperative Fish and Wildlife Research Unit (U.S. Geological Survey, Oklahoma Department of Wildlife Conservation, Oklahoma State University, and Wildlife Management Institute cooperating). Funding was provided by the Oklahoma Department of Wildlife Conservation (F11AF00031). We thank Michi Tobler for the thoughtful comments on earlier versions of the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

  1. Alig, R. J. & R. G. Healy, 1987. Urban and built-up land area changes in the United States: an empirical investigation of determinants. Land Economics 63: 215–226.CrossRefGoogle Scholar
  2. Allan, D. J., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.CrossRefGoogle Scholar
  3. Allen, K. R., 1959. The distribution of stream bottom faunas. New Zealand Journal of Ecology. 6: 5–8.Google Scholar
  4. Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 57: 289–300.Google Scholar
  5. Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.CrossRefGoogle Scholar
  6. Brewer, S. K. & J. J. Dyer, 2014. The impacts of flow alterations to crayfishes in southeastern Oklahoma, with an emphasis on the Mena crayfish (Orconectes menae). U.S. Department of Interior, Fish and Wildlife Service, Cooperator Science Series FWS/CSS-105-2014, Washington, DC.Google Scholar
  7. Brewer, S. K. & D. J. Orth, 2015. Smallmouth bass. In Tringali, M. D., M. S. Allen, T. Birdsong, & J. M. Long (eds), Proceedings of the Symposium Black Bass Diversity: Multidisciplinary Science for Conservation. American Fisheries Society, Symposium 82, Bethesda, MD (in press).Google Scholar
  8. Brewer, S. K. & C. F. Rabeni, 2011. Interactions between natural-occurring landscape conditions and land use influencing the abundance of riverine smallmouth bass, Micropterus dolomieu. Canadian Journal of Fisheries and Aquatic Science 68: 1922–1933.CrossRefGoogle Scholar
  9. Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.CrossRefGoogle Scholar
  10. Bubb, D. H., T. J. Thom & M. C. Lucas, 2004. Movement and dispersal of the invasive signal crayfish Pacifastacus leniusculus in upland rivers. Freshwater Biology 49: 357–368.CrossRefGoogle Scholar
  11. Candolin, U., 2009. Population responses to anthropogenic disturbance: Lessons from three-spined sticklebacks Gasterosteus aculeatus in eutrophic habitats. Journal of Fish Biology 75: 2108–2121.PubMedCrossRefGoogle Scholar
  12. Chapman, D. W., 1966. Food and space as regulators of salmonid populations. The American Naturalist 100: 345–357.CrossRefGoogle Scholar
  13. Creed, R. P. J. & J. M. Reed, 2004. Ecosystem engineering by crayfish in a headwater stream community. Journal of the North American Benthological Society 23: 224–236.CrossRefGoogle Scholar
  14. DeFries, R. S., C. B. Field, I. Fung, G. J. Collatz & L. Bounoua, 1999. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochemical Cycles 13: 803–815.CrossRefGoogle Scholar
  15. DeLong, M. D. & M. A. Brusven, 1998. Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environmental Management 22: 445–457.PubMedCrossRefGoogle Scholar
  16. DiStefano, R., 2005. A Program Plan for Conservation and Management of Missouri’s Non-cave Dwelling Crayfish Resources. Missouri Department of Conservation, Columbia, MO.Google Scholar
  17. DiStefano, R. J., D. D. Magoulick, E. M. Imhoff & E. M. Larson, 2009. Imperiled crayfishes use the hyporheic zone during seasonal drying of an intermittent stream. Journal of North American Benthological Society 28: 142–152.CrossRefGoogle Scholar
  18. Dorn, N. J., 2008. Colonization and reproduction of large macroinvertebrates are enhanced by drought-related fish reductions. Hydrobiologia 605: 209–218.CrossRefGoogle Scholar
  19. Dorn, N. J. & J. C. Trexler, 2007. Crayfish assemblage shifts in a large drought-prone wetland: The roles of hydrology and competition. Freshwater Biology 52: 2399–2411.CrossRefGoogle Scholar
  20. Dorn, N. J. & J. C. Volin, 2009. Resistance of crayfish (Procambarus spp.) populations to wetland drying depends on species and substrate. Journal of the North American Benthological Society 28: 766–777.CrossRefGoogle Scholar
  21. Dyer, J. J., S. K. Brewer, T. A. Worthington & E. A. Bergey, 2013. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations. Freshwater Biology 58: 1071–1088.CrossRefGoogle Scholar
  22. Falke, J. A., K. R. Bestgen & K. D. Fausch, 2010. Streamflow reductions and habitat drying affect growth, survival, and recruitment of Brassy Minnow across a Great Plains riverscape. Transactions of the American Fisheries Society 139: 1566–1583.CrossRefGoogle Scholar
  23. Flinders, C. A. & D. D. Magoulick, 2003. Effects of stream permanence on crayfish community structure. The American Naturalist 149: 134–147.CrossRefGoogle Scholar
  24. Flinders, C. A. & D. D. Magoulick, 2007. Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish. Journal of North American Benthological Society 26: 767–778.CrossRefGoogle Scholar
  25. Fournier, D. A., H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, A. Nielsen & J. Sibert, 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27: 233–249.CrossRefGoogle Scholar
  26. Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression. SAGE Publications Inc., Thousand Oaks, California.Google Scholar
  27. Franssen, N. R., 2011. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish. Evolutionary Applications 4: 791–804.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Freeman, M. C. & P. A. Marcinek, 2006. Fish assemblage responses to water withdrawals and water supply reservoirs in Piedmont streams. Environmental Management 38: 435–450.PubMedCrossRefGoogle Scholar
  29. Geiger, W., P. Alcorlo, A. Baltanas & C. Montes, 2005. Impact of an introduced Crustacean on the trophic webs of Mediterranean wetlands. Biological Invasions 7: 49–73.CrossRefGoogle Scholar
  30. Gherardi, F., 2002. Behaviour. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science Ltd, London: 258–290.Google Scholar
  31. Goddard, M. A., C. J. Post, W. R. English & J. W. Pike, 2008. Examining the impacts of changing land use on biological integrity in streams using Geographical Information Systems and statistical modeling. Aquatic Ecosystem Health & Management 11: 230–242.CrossRefGoogle Scholar
  32. Hancock, P. J., 2002. Human impacts on stream-groundwater exchange zone. Environmental Management 29: 763–781.PubMedCrossRefGoogle Scholar
  33. Hill, A. M. & D. M. Lodge, 1994. Diel changes in resource demand: competition and predation in species replacement among crayfishes. Ecology 75: 2118–2126.CrossRefGoogle Scholar
  34. Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.PubMedCrossRefGoogle Scholar
  35. Huner, J. V., 1989. Survival of red swamp and white-river crayfish under simulated burrow conditions. Crawfish Tales 8: 29.Google Scholar
  36. Jenkins, M., 2003. Prospects for biodiversity. Science 302: 1175–1177.PubMedCrossRefGoogle Scholar
  37. Jones, S. N. & E. A. Bergey, 2007. Habitat segregation in stream crayfishes: implications for conservation. Journal of North American Benthological Society 26: 134–144.CrossRefGoogle Scholar
  38. Karr, J. R. & I. J. Schlosser, 1978. Water resources and the land–water interface. Science 201: 229–234.PubMedCrossRefGoogle Scholar
  39. Kemp, P., D. Sear, A. Collins, P. Naden & I. Jones, 2011. The impacts of fine sediment on riverine fish. Hydrological Processes 25: 1800–1821.CrossRefGoogle Scholar
  40. Klein, R. D., 1979. Urbanization and stream quality impairment. Journal of the American Water Resources Association 15: 948–963.CrossRefGoogle Scholar
  41. Larson, E. R., D. D. Magoulick, C. Turner & K. H. Laycock, 2009. Disturbance and species displacement: different tolerances to stream drying and desiccation in a native and invasive crayfish. Freshwater Biology 54: 1899–1908.CrossRefGoogle Scholar
  42. Lenat, D. R., 1984. Agriculture and stream water quality: a biological evaluation of erosion control practices. Environmental Management 8: 333–343.CrossRefGoogle Scholar
  43. Lenat, D. R. & J. K. Crawford, 1994. Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia 294: 185–199.CrossRefGoogle Scholar
  44. Malcolm, I. A., S. M. Greig, A. F. Youngson & C. Soulsby, 2008. Hyporheic influences on salmon embryo survival and performance. In Sear, D. A. & P. Devries (eds), Salmonid Spawning Habitat in Rivers: Physical Controls, Biological Responses, and Approaches to Remediation. American Fisheries Society, Symposium 65, Bethesda, MD: 1–24.Google Scholar
  45. Martin, S. D., B. A. Harris, J. R. Collums & R. M. Bonett, 2012. Life between predators and a small space: substrate selection of an interstitial space-dwelling stream salamander. Journal of Zoology 287: 205–214.CrossRefGoogle Scholar
  46. McMahon, T. A., 2002. Physiological adaptation to environment. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science Ltd, London: 327–376.Google Scholar
  47. McMahon, B. R. & S. A. Stuart, 1999. Haemolymph gas exchange and ionic and acid-base regulation during long-term air exposure an aquatic recovery in Procambarus clarkii. Freshwater Crayfish 12: 134–153.Google Scholar
  48. Minshall, G. W., C. T. Robinson, D. E. Lawrence, D. A. Andrews & J. T. Brock, 2001. Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10-year period following disturbance by wildfire. International Journal of Wildland Fire 10: 201–213.CrossRefGoogle Scholar
  49. Momot, W. T., 1995. Redefining the role of crayfish in aquatic ecosystems. Reviews in Fisheries Science 3: 33–63.CrossRefGoogle Scholar
  50. Montemarano, J. J., M. W. Kershner & L. G. Leff, 2007. Crayfish effects on fine particulate organic matter quality and quantity. Fundamental and Applied Limnology 168: 223–229.CrossRefGoogle Scholar
  51. Osborne, L. L. & D. A. Kovacic, 1993. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology 29: 243–258.CrossRefGoogle Scholar
  52. Parkyn, S. M., C. F. Rabeni & K. J. Collier, 1997. Effects of crayfish (Paranephrops planifrons: Parastacidae) on in-stream processes and benthic faunas: a density manipulation experiment. New Zealand Journal of Marine and Freshwater Research 31: 685–692.CrossRefGoogle Scholar
  53. Peterson, J. T. & C. F. Rabeni, 1996. Natural thermal refugia for temperate warmwater stream fishes. North American Journal of Fisheries Management 16: 738–746.CrossRefGoogle Scholar
  54. Pike, N., 2011. Using false discovery rates for multiple comparisons in ecology and evolution. Methods in Ecology and Evolution 2: 278–282.CrossRefGoogle Scholar
  55. Poff, L. N., D. J. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. BioScience 47: 769–784.CrossRefGoogle Scholar
  56. Postel, S. L., 2000. Entering an era of water scarcity: the challenges ahead. Ecological Applications 10: 941–948.CrossRefGoogle Scholar
  57. Postel, S. L., 2003. Securing water for people, crops, and ecosystems: new mindset and new priorities. Natural Resources Forum 27: 89–98.CrossRefGoogle Scholar
  58. Pusey, B. J. & A. H. Arthington, 2003. Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine and Freshwater Research 54: 1–16.CrossRefGoogle Scholar
  59. Rabeni, C. F., 1992. Trophic linkage between stream centrarchids and their crayfish prey. Canadian Journal of Fisheries and Aquatic Sciences 49: 1714–1721.CrossRefGoogle Scholar
  60. R Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.Org/.
  61. Richards, C. & K. L. Bacon, 1994. Influence of fine sediment on macroinvertebrate colonization of surface and hyporheic stream substrate. Great Basin Naturalist 54: 106–113.Google Scholar
  62. Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Biodiversity—global biodiversity scenarios for the year 2100. Science 287: 1770–1774.PubMedCrossRefGoogle Scholar
  63. Skaug, H., D. Fournier, A. Nielsen, A. Magnusson & B. Bolker, 2013. glmmADMB: Generalized Linear Mixed Models Using AD Model Builder. R package version 0.7.7. http://glmmadmb.r-forge.r-project.org; http://admb-project.org.
  64. Stein, R. A. & J. J. Magnuson, 1976. Behavioral response of crayfish to a fish predator. Ecology 57: 751–761.CrossRefGoogle Scholar
  65. Stoeckel, J. A., B. S. Helms & E. Cash, 2011. Evaluation of a crayfish burrowing chamber design with simulated groundwater flow. Journal of Crustacean Biology 31: 50–58.CrossRefGoogle Scholar
  66. Verhoeven, K. J. F., K. L. Simonsen & L. M. McIntyre, 2005. Implementing false discovery rate control: increasing your power. Oikos 108: 643–647.CrossRefGoogle Scholar
  67. Vörösmarty, C. J. G., P. J. Salisbury & R. B. Lammers, 2000. Global water resources: vulnerability from climate change and population growth. Science 289: 284–288.PubMedCrossRefGoogle Scholar
  68. Waco, K. E. & W. W. Taylor, 2010. The influence of groundwater withdrawal and land use changes on brook charr (Salvelinus fontinalis) thermal habitat in two coldwater tributaries in Michigan, USA. Hydrobiologia 650: 101–116.CrossRefGoogle Scholar
  69. Wang, L., J. Lyons, P. Kanehl & R. Gatti, 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22: 6–12.CrossRefGoogle Scholar
  70. Ward, J. V. & J. A. Stanford, 1979. The Ecology of Regulated Streams. Plenum Press, New York.CrossRefGoogle Scholar
  71. Waters, T. F., 1995. Sediment in Streams: Source Biological Effects and Control. American Fisheries Society, Bethesda, MD.Google Scholar
  72. Westhoff, J. T. & C. F. Rabeni, 2013. Resource selection and space use of a native and an invasive crayfish: Evidence for competitive exclusion? Freshwater Biology 32: 1383–1397.CrossRefGoogle Scholar
  73. Willis, T. C., E. A. Baker, A. J. Nuhfer & T. G. Zorn, 2006. Response of the benthic macroinvertebrate community in a Northern Michigan stream to reduced summer streamflows. River Research and Applications 22: 819–836.CrossRefGoogle Scholar
  74. Whitledge, G. W., R. S. Hayward, R. D. Zweifel & C. F. Rabeni, 2003. Development and laboratory evaluation of a bioenergetics model for subadult and adult smallmouth bass. Transactions of the American Fisheries Society 132: 316–325.CrossRefGoogle Scholar
  75. Wollmuth, J. C. & J. W. Eheart, 2000. Surface water withdrawal allocation and trading systems for traditionally riparian areas. Journal of the American Water Resources Association 36: 293–303.CrossRefGoogle Scholar
  76. Xenopoulos, M. A. & D. M. Lodge, 2006. Going with the flow: using species–discharge relationships to forecast losses in fish biodiversity. Ecology 87: 1907–1914.PubMedCrossRefGoogle Scholar
  77. Xenopoulos, M. A., D. M. Lodge, J. Alcamo, M. Märker, K. Schulze & D. P. Van Vuuren, 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11: 1557–1564.CrossRefGoogle Scholar
  78. Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA)  2014

Authors and Affiliations

  • Joseph J. Dyer
    • 1
  • Thomas A. Worthington
    • 1
  • Shannon K. Brewer
    • 2
  1. 1.Oklahoma Cooperative Fish and Wildlife Research UnitOklahoma State UniversityStillwaterUSA
  2. 2.U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research UnitOklahoma State UniversityStillwaterUSA

Personalised recommendations