, Volume 747, Issue 1, pp 1–18 | Cite as

Differential transport and preservation of the instars of Limnocythere inopinata (Crustacea, Ostracoda) in three large brackish lakes in northern China

  • Dayou Zhai
  • Jule Xiao
  • Jiawei Fan
  • Ruilin Wen
  • Qiqing Pang
Primary Research Paper


Population age structure, preservation, and carapace abundance of the valve remains of Limnocythere inopinata in 88 surface-sediment samples from Lakes Daihai, Dali, and Hulun were examined to better understand taphonomy of limnic ostracods. The spatial changes in population structure of L. inopinata match the within-lake hydraulic gradients, with the older instars preferentially deposited in the littoral zone while the younger instars being more abundant in deeper waters. We propose that molt and mortem remains of ostracods, especially those of the small juveniles, experience downslope transport. The magnitude of transport in a lake is controlled by wind-driven hydrodynamics. There is no chemical dissolution of ostracod valves in these alkaline lakes, and degradation is mainly represented by physical breakage. The preservation of L. inopinata is related to sedimentation rate and hydraulic stability, and the spatial pattern of preservation varies between lakes. Spatial and seasonal changes in sedimentation rate and hydraulic condition, and the ostracod life cycle may have contributed to this complexity. Adult and A-7 carapaces are the most frequent among the instars. We suggest that the preferential preservation of juvenile carapaces is either related to high mortality rate or to the good preservation in deep waters.


Ostracod Population structure Transport Preservation Taphonomy 



We are greatly indebted to Dr. David J. Horne, Dr. Stuart A. Halse, and an anonymous reviewer for their valuable comments and suggestions. Associate Editor Stuart A. Halse and Assistant Editor Deepan Selvaraj arranged the review. This study is supported by Grants NSFC41130101, NSFC41290251, 2010CB833402, and NSFC41102110. Thanks are extended to Laurent Decrouy, Chris Gouramanis, David J. Horne, Zhangdong Jin, Eugen Karl Kempf, Okan Külköylüoğlu, Xiangzhong Li, Lisa Park, Radovan Kyška Pipik, Burkhard Scharf, and Finn Viehberg for constructive discussion. We thank Xin Yan for the assistance in SEM analysis. Chris Gouramanis, Eugen Karl Kempf, Mervin Kontrovitz, and Burkhard Scharf provided important references.


  1. Alin, S. R. & A. S. Cohen, 2004. The live, the dead, and the very dead: taphonomic calibration of the recent record of paleoecological change in Lake Tanganyika, East Africa. Paleobiology 30: 44–81.CrossRefGoogle Scholar
  2. Belmecheri, S., T. Namiotko, C. Robert, U. von Grafenstein & D. L. Danielopol, 2009. Climate controlled ostracod preservation in Lake Ohrid (Albania, Macedonia). Palaeogeography, Palaeoclimatology, Palaeoecology 277: 236–245.CrossRefGoogle Scholar
  3. Błachowiak-Samołyk, K. & A. Osowiecki, 2002. Distribution and population structure of pelagic Ostracoda near the sea-ice edge in the Scotia Sea and off the King George Island (December 1988 – January 1989). Polish Polar Research 23: 135–152.Google Scholar
  4. Błachowiak-Samołyk, K. & M. V. Angel, 2007. A year round comparative study on the population structures of pelagic Ostracoda in Admiralty Bay (Southern Ocean). Hydrobiologia 585: 67–77.CrossRefGoogle Scholar
  5. Blome, M. W., A. S. Cohen & M. J. Lopez, 2014. Modern distribution of ostracodes and other limnological indicators in southern Lake Malawi: implications for paleocological studies. Hydrobiologia 728: 179–200.CrossRefGoogle Scholar
  6. Boomer, I., D. J. Horne & I. J. Slipper, 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In Park, L. E. & A. J. Smith (eds), Bridging the Gap: Trends in the Ostracode Biological and Geological Sciences. The Paleontological Society Papers, Vol. 9. Yale University, New Haven: 153–179.Google Scholar
  7. Chivas, A. R., P. De Deckker & J. M. G. Shelley, 1985. Strontium content of ostracods indicates lacustrine palaeosalinity. Nature 316: 251–253.CrossRefGoogle Scholar
  8. Castillo-Escrivà, A., A. Mestre, J. S. Monrós & F. Mesquita-Joanes, 2013. Population dynamics of an epibiont Ostracoda on the invasive red swamp crayfish Procambarus clarkii in a western Mediterranean wetland. Hydrobiologia 714: 217–228.CrossRefGoogle Scholar
  9. Compilatory Commission of Vegetation of China, 1980. Vegetation of China. Science Press, Beijing: 932–955. (in Chinese).Google Scholar
  10. Danielopol, D. L., L. M. Casale & R. Olteanu, 1986. On the preservation of carapaces of some limnic ostracods: an exercise in actuopalaeontology. Hydrobiologia 143: 143–157.CrossRefGoogle Scholar
  11. Han, Y. P., 2007. An investigation of the present situation of the fish resources in Lake Dali. Inner Mongolia Water Resources 2007(01): 45–46. (in Chinese).Google Scholar
  12. Horne, D. J., 1982. The vertical distribution of phytal ostracods in the intertidal zone at Gore Point, Bristol Channel, U.K. Journal of Micropalaeontology 1: 71–84.CrossRefGoogle Scholar
  13. Karanovic, I., 2012. Recent Freshwater Ostracods of the World. Springer, Berlin: 54–65.CrossRefGoogle Scholar
  14. Kock, R., 1992. Ostracods in the epipelagial zone off the Antarctic Peninsula – a contribution to the systematics and to their distribution and population structure with regard to seasonality. Berichte zur Polarforschungen 106: 1–209.Google Scholar
  15. Kontrovitz, M., 1975. A study of the differential transportation of ostracodes. Journal of Paleontology 49: 937–941.Google Scholar
  16. Kontrovitz, M., 1967. An investigation of ostracode preservation. Quarterly Journal of the Florida Academy of Sciences 29: 171–177.Google Scholar
  17. Kornicker, L. S., W. F. Humphreys & D. L. Danielopol, 2010. Ontogeny of an anchialine ostracod from Western Australia and comments on the origin and distribution of Halocyprididae. Crustaceana 83: 715–752.CrossRefGoogle Scholar
  18. Lan, X. H., X. Y. Zhang, F. Zhang & R. L. Chen, 2001. Evolution of biological community and fisheries development in Daihai Lake, Inner Mongolia. Journal of Lake Sciences 13: 180–186. (in Chinese).Google Scholar
  19. Li, Z. G., 1993. Annals of Hexigten Banner. People’s Press of Inner Mongolia, Hohhot: 97–104, 547–555. (in Chinese).Google Scholar
  20. Li, Y. F., L. P. Zhu & B. Y. Li, 2002. Environmental changes and Ostracoda in the Chen Co Lake of southern Tibet in recent 1400 years. Acta Geographica Sinica 57: 413–421. (in Chinese).Google Scholar
  21. Li, X. Z., W. G. Liu & L. M. Xu, 2012. Stable oxygen isotope of ostracods in recent sediments of Lake Gahai in the Qaidam Basin, northwest China: The implications for paleoclimatic reconstruction. Global and Planetary Change 94–95: 13–19.CrossRefGoogle Scholar
  22. Li, Y. & Z. D. Jin, 2013. Seasonal and interannual variations in abundance and oxygen-carbon isotopic compositions of ostracod shells from Lake Qinghai and their controlling factors: a case study on the sediment trap. Journal of Earth Environment 4: 1328–1337. (in Chinese).Google Scholar
  23. Liu, W. & J. Y. Li, 2010. An assessment of the ecological condition of Lake Dali. Inner Mongolia Agricultural Science and Technology 2010(4): 84. (in Chinese).Google Scholar
  24. Meireles, R. P., D. Keyse, P. A. Borges, L. Silva, A. M. de Frias Martins & S. P. Ávila, 2014. The shallow marine ostracod communities of the Azores (Mid-North Atlantic): taphonomy and palaeoecology. Geologica Acta 12: 53–70.Google Scholar
  25. Meisch, C., 2000. Freshwater ostracoda of Western and Central Europe. In Schwoerbel, J. & P. Zwick (eds), Süßwasserfauna von Mitteleuropa 8/3. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  26. Meng, H. P., R. Cao, Y. K. Gao & Y. H. Liu, 2007. An investigation of the aquatic plant resources in Lake Dali area. Inner Mongolia Agricultural Science and Technology 2007(02): 96. (in Chinese).Google Scholar
  27. Mezquita, F., V. Olmos & R. Oltra, 2000. Population ecology of Cyprideis torosa (Jones, 1850) in a hypersaline environment of the Western Mediterranean (Santa Pola, Alacant) (Crustacea: Ostracoda). Ophelia 53: 119–130.CrossRefGoogle Scholar
  28. Mischke, S., U. Bößneck, B. Diekmann, U. Herzschuh, H. J. Jin, A. Kramer, B. Wünnemann & C. J. Zhang, 2010. Quantitative relationship between water-depth and sub-fossil ostracod assemblages in Lake Donggi Cona, Qinghai Province, China. Journal of Paleolimnology 43: 589–608.CrossRefGoogle Scholar
  29. Park, L. E., A. S. Cohen, K. Martens & R. Bralek, 2003. The impact of taphonomic processes on interpreting paleoecologic changes in large lake ecosystems: ostracodes in Lakes Tanganyika and Malawi. Journal of Paleolimnology 30: 127–138.CrossRefGoogle Scholar
  30. Ruiz, F., M. L. González-Regalado, J. M. Muñoz, J. G. Pendón, A. Rodríguez-Ramírez, L. Cáceres & J. Rodríguez Vidal, 2003. Population age structure techniques and ostracods: applications in coastal hydrodynamics and paleoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 199: 51–69.CrossRefGoogle Scholar
  31. Scharf, B. W., W. Hollwedel & I. Jüttner, 1995. Fossil (Holocene) and living Ostracoda and Cladocera (Crustacea) from Lake Arendsee, Germany. In Riha, J. (ed.), Ostracoda and Biostratigraphy. Balkema, Rotterdam: 321–332.Google Scholar
  32. Scharf, B. W., B. Boehrer, O. Buettner, C. Kopsch & F. Niessen, 2010. Local variability of sedimentation rate in Lake Arendsee, Germany. Limnologica 40: 97–101.CrossRefGoogle Scholar
  33. Schmit, O., K. Martens & F. Mezquita-Joanes, 2012. Vulnerability of sexual and asexual Eucypris virens (Crustacea, Ostracoda) to predation: an experimental approach with dragonfly naiads. Fundamental and Applied Limnology 181: 207–214.CrossRefGoogle Scholar
  34. Smith, R. J. & K. Martens, 2000. The ontogeny of the cypridid ostracod Eucypris virens (Jurine, 1820) (Crustacea, Ostracoda). Hydrobiologia 419: 31–63.CrossRefGoogle Scholar
  35. Szlauer-Łukaszewska, A. & T. Radziejewska, 2013. Two techniques of ostracod (Ostracoda, Crustacea) extraction from organic detritus-rich sediments. Limnologica 43: 272–276.CrossRefGoogle Scholar
  36. van Doninck, K., I. Schön, K. Martens & B. Goddeeris, 2003. The life-cycle of the asexual ostracod Darwinula stevensoni (Brady & Robertson, 1870) (Crustacea, Ostracoda) in a temporate pond. Hydrobiologia 500: 331–340.CrossRefGoogle Scholar
  37. van Harten, D., 1986. Use of ostracodes to recognize downslope contamination in paleobathymetry and a preliminary reappraisal of the Prasas Marls (Pliocene), Crete, Greece. Geology 14: 856–859.CrossRefGoogle Scholar
  38. Vandekerkhove, J., T. Namiotko, E. Hallmann & K. Martens, 2012. Predation by macroinvertebrates on Heterocypris incongruens (Ostracoda) in temporary ponds: impacts and responses. Fundamental and Applied Limnology 181: 39–47.CrossRefGoogle Scholar
  39. Wang, Q. & Y. Wang, 1993. Annals of Liangcheng County. People’s Press of Inner Mongolia, Huhehaote. (in Chinese).Google Scholar
  40. Wang, H. J., J. H. Jiang & X. G. Li, 2006. Study on changes of lake shoreline morphology in Daihai Lake. Resources and Environment in the Yangtze Basin 15: 674–677. (in Chineses).Google Scholar
  41. Wang, B., C. W. Lü, J. He, W. Wang, Y. Y. Sun & J. Zhang, 2012. Spatio-temporal monitoring of Hulun Lake using remote sensing. Environmental Science and Technology 35: 94–98, 149. (in Chinese).Google Scholar
  42. Whatley, R. C., 1983. The application of Ostracoda to palaeoenvironmental analysis. In Maddocks, R. F. (ed.), Applications of Ostracoda. University of Houston, Houston: 51–77.Google Scholar
  43. Whatley, R. C., 1988. Population structure of ostracods: some general principles for the recognition of palaeoenvironments. In De Deckker, P., J.-P. Colin & J.-P. Peypouquet (eds), Ostracoda in the Earth Sciences. Elsevier, Amsterdam: 245–256.Google Scholar
  44. Xia, J., B. J. Haskell, D. R. Engstrom & E. Ito, 1997. Holocene climate reconstructions from tandem trace-element and stable-isotope composition of ostracodes from Coldwater Lake, North Dakota, U.S.A. Journal of Paleolimnology 17: 85–100.CrossRefGoogle Scholar
  45. Xiao, J. L., Q. H. Xu, T. Nakamura, X. L. Yang, W. D. Liang & Y. Inouchi, 2004. Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quaternary Science Reviews 23: 1669–1679.CrossRefGoogle Scholar
  46. Xiao, J. L., B. Si, D. Y. Zhai, S. Itoh & Z. Lomtatidze, 2008. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. Journal of Paleolimnology 40: 519–528.CrossRefGoogle Scholar
  47. Xiao, J. L., Z. G. Chang, R. L. Wen, D. Y. Zhai, S. Itoh & Z. Lomtatidze, 2009. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. The Holocene 19: 899–908.CrossRefGoogle Scholar
  48. Xiao, J. L., Z. G. Chang, J. W. Fan, L. Zhou, D. Y. Zhai, R. L. Wen & X. G. Qin, 2012. The link between grain-size components and depositional processes in a modern clastic lake. Sedimentology 59: 1050–1062.CrossRefGoogle Scholar
  49. Xiao, J. L., J. W. Fan, L. Zhou, D. Y. Zhai, R. L. Wen & X. G. Qin, 2013. A model for linking grain-size component to lake level status of a modern clastic lake. Journal of Asian Earth Sciences 69: 149–158.CrossRefGoogle Scholar
  50. Xu, Z. J., F. Y. Jiang, H. W. Zhao, Z. B. Zhang & L. Sun, 1989. Annals of Hulun Lake. Jilin Literature and History Publishing House, Changchun. (in Chinese).Google Scholar
  51. Yin, Y., W. Geiger & K. Martens, 1999. Effects of genotype and environment on phenotypic variability in Limnocythere inopinata (Crustacea: Ostracoda). Hydrobiologia 400: 85–114.CrossRefGoogle Scholar
  52. Zhai, D. Y., J. L. Xiao, L. Zhou, R. L. Wen, Z. G. Chang & Q. Q. Pang, 2010. Similar distribution pattern of different phenotypes of Limnocythere inopinata (Baird) in a brackish-water lake in Inner Mongolia. Hydrobiologia 651: 185–197.CrossRefGoogle Scholar
  53. Zhai, D. Y., J. L. Xiao, L. Zhou, R. L. Wen, Z. G. Chang, X. Wang, X. D. Jin, Q. Q. Pang & S. Itoh, 2011. Holocene East Asian monsoon variation inferred from species assemblage and shell chemistry of the ostracodes from Hulun Lake, Inner Mongolia. Quaternary Research 75: 512–522.CrossRefGoogle Scholar
  54. Zhai, D. Y., J. L. Xiao, J. W. Fan, L. Zhou, R. L. Wen & Q. Q. Pang, 2013. Spatial heterogeneity of the population age structure of the ostracode Limnocythere inopinata in Hulun Lake, Inner Mongolia and its implications. Hydrobiologia 716: 29–46.CrossRefGoogle Scholar
  55. Zhang, X. G. & B. R. Pratt, 1993. Early Cambrian ostracode larvae with a univalved carapace. Science 262: 93–94.PubMedCrossRefGoogle Scholar
  56. Zhang, X. Y., W. X. Wu, Y. B. Ji & C. Wang, 2008. On the cultivation of the fish Protosalanx hyalocranius in Lake Daihai. Modern Agriculture 2008(08): 64–65. (in Chinese).Google Scholar
  57. Zhang, Y. L., Q. J. Xu, B. D. Xi & L. Y. Zhang, 2011. Major problems and control measures of water ecological environment in Inner Mongolia-Xinjiang Plateau. Journal of Lake Sciences 23: 828–836. (in Chinese).Google Scholar
  58. Zhou, Y. K. & J. H. Jiang, 2009. Analysis on characteristics of climate change in the region of Lake Daihai in recent 43 years. Journal of Arid Land Resources and Environment 23: 8–13. (in Chinese).Google Scholar
  59. Zhu, L. P., P. Peng, M. P. Xie, J. B. Wang, P. Frenzel, C. Wrozyna & A. Schwalb, 2010. Ostracod-based environmental reconstruction over the last 8,400 years of Nam Co Lake on the Tibetan plateau. Hydrobiologia 648: 157–174.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dayou Zhai
    • 1
  • Jule Xiao
    • 1
  • Jiawei Fan
    • 1
  • Ruilin Wen
    • 1
  • Qiqing Pang
    • 2
  1. 1.Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.College of ResourcesShijiazhuang University of EconomicsShijiazhuangChina

Personalised recommendations