Skip to main content

Advertisement

Log in

Temporal nestedness in Chironomidae and the importance of environmental and spatial factors in species rarity

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biological communities are composed of a few common and many rare species. An understanding of the mechanisms that govern the distribution of these species is fundamental to knowledge regarding community ecology. Our hypothesis is that chironomid larvae follow a nested distribution in relation to hydrological periods in Neotropical floodplain lakes, whereby the flood period composition is a subset of the drought periods with a predominance of common species. We collected samples from 18 lakes in 2011 in a flood month and three drought months. The community followed a nested distribution where the spatial factors were more important for rare and common species during the flood and for the common species during all months. Thus, with the increasing connectivity and similarity of environments during the flood, neutral processes, as the dispersal, would govern the community. Conversely, environmental factors were more important for rare species in the drought, which suggest that these species are more specialists, largely influenced by niche-related processes. Thus, our study emphasizes the complexity of biological communities specifically concerning how environmental, spatial, and temporal factors influence community dynamics among species groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology & Hydrobiology 4: 267–289.

    Google Scholar 

  • Algarte, V. M., L. Rodrigues, L. V. Landeiro, T. Siqueira & L. M. Bini, 2014. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722: 279–290.

    Article  Google Scholar 

  • Almeida-Neto, M., P. R. J. Guimarães & T. M. A. Lewinsohn, 2008. Consistent metric for nestedness analysis in ecological systems: reconciling concept and quantification. Oikos 117: 1227–1239.

    Article  Google Scholar 

  • Anderson, A. M. & L. C. Ferrington Jr., 2013. Resistance and resilience of winter-emerging Chironomidae (Diptera) to a flood event: implications for Minnesota trout streams. Hydrobiologia 707: 59–71.

    Article  Google Scholar 

  • Anjos, A. F., A. M. Takeda & G. D. Pinha, 2011. Distribuição espacial e temporal das larvas de Chironomidae em diferentes ambientes do complexo - rio Baía - Mato Grosso do Sul - Brasil. Acta Scientiarum Biological Sciences 33: 417–426.

    Article  Google Scholar 

  • Azeria, T. E. & J. Kolasa, 2008. Nestedness, niche metrics and temporal dynamics of a metacommunity in a dynamic natural model system. Oikos 117: 1006–1019.

    Article  Google Scholar 

  • Blackburn, T. M., P. Cassey & K. J. Gaston, 2006. Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. Journal of Animal Ecology 75: 1426–1439.

    Article  PubMed  Google Scholar 

  • Bloch, C. P., C. L. Higgins & M. R. Willig, 2007. Effects of large-scale disturbance on metacommunity structure of terrestrial gastropods: temporal trends in nestedness. Oikos 116: 395–406.

    Article  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Brown, J. H., 1984. On the relationship between abundance and distribution of species. American Naturalist 124: 255–279.

    Article  Google Scholar 

  • Carmouze, J. P., 1994. O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. São Paulo: Edgard Blüncher.

  • Chase, J. M. & M. A. Leibold, 2003. Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago.

    Book  Google Scholar 

  • Epler, J. H., 2001. Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina. Special Publication, Crawfordwille.

    Google Scholar 

  • Ferrington, L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 445–447.

    Google Scholar 

  • Finn, D. S. & L. Poff, 2011. Examining spatial concordance of genetic and species diversity patterns to evaluate the role of dispersal limitation in structuring headwater metacommunities. Journal of North American Benthological Society 30: 273–283.

    Article  Google Scholar 

  • Funk, A., F. Schiemer & W. Reckendorfer, 2013. Metacommunity structure of aquatic gastropods in a river floodplain: the role of niche breadth and drift propensity. Freshwater Biology 58: 2505–2516.

    Article  Google Scholar 

  • Gaston, K. J., 1994. Rarity. Chapman and Hall, London.

    Book  Google Scholar 

  • Gaston, K. J., 2011. Common ecology. BioScience 61: 354–362.

    Article  Google Scholar 

  • Gilpin, M. E. & I. A. Hanski, 1991. Metapopulation Dynamics: Empirical and Theorical Investigations. Academic Press, London.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohstad, 1978. Methods for Physical and Chemical Analysis of Freshwater. Blackwell, Oxford.

    Google Scholar 

  • Guimarães, P. R. J., V. Rico-Gray, S. R. Reis & J. N. Thompson, 2006. Asymmetries in specialization in ant–plant mutualistic networks. Proceedings of the Royal Society of London 273: 2041–2047.

    Article  Google Scholar 

  • Heino, J., 2005. Metacommunity patters of highly diverse stream midges: gradients, chequerboards, and nestedness, or is there only randomness? Ecology Entomology 30: 590–599.

    Article  Google Scholar 

  • Heino, J., H. Myrkra & T. Muotka, 2009. Temporal variability of nestedness and idiosyncratic species in stream insect Kassemblages. Diversity and Distributions 15: 198–206.

    Article  Google Scholar 

  • Henriques-Silva, R., Z. Lindo & P. R. Peres-Neto, 2013. A community of metacommunities: exploring patterns in species distributions across large geografical areas. Ecology 94: 627–639.

    Article  PubMed  Google Scholar 

  • Higuti, J. & A. M. Takeda, 2002. Spatial and temporal variation in of Chironomid larval (Diptera) in two lagoons and two tributaries of the Upper Paraná River floodplain, Brazil. Brazilian Journal of Biology 62: 807–818.

    Article  CAS  Google Scholar 

  • Hubbell, S. P., 2001. A Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Science 106: 110–127.

    Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Leibold, M. A. & M. A. McPeek, 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87: 1399–1410.

    Article  PubMed  Google Scholar 

  • Leibold, M. A. & G. M. Mikkelson, 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97: 237–250.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase & M. F. Hoopes, 2004. The metacommunity concept: a framework for multiscale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Mackereth, F. Y. H., J. G. Heron & J. J. Talling, 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association Scientific Publication 36: 1–120.

    Google Scholar 

  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Science, New York.

    Google Scholar 

  • Marquet, A. P., M. Fernández, S. A. Navarreta & C. Valdovinos, 2004. Diversity emerging: toward a deconstruction of biodiversity patterns. In Lomollino, M. & L. Haeney (eds), Frontiers of Biogeography: New Directions in the Geography of Nature. Sinauer Associates, Massachusetts: 191–210.

    Google Scholar 

  • Moore, J. E. & R. K. Swihart, 2007. Toward ecologically explicit null models of nestedness. Oecologia 152: 763–777.

    Article  PubMed  Google Scholar 

  • Nabout, J. C., T. Siqueira, L. M. Bini & I. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35: 720–726.

    Article  Google Scholar 

  • Norton, J., J. W. Lewis & D. Rollinson, 2004. Temporal and spatial patterns of nestedness in eel macroparasite communities. Parasitology 129: 203–211.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2010. Vegan: Community Ecology Package. R package version 1.17–3.

  • Pandit, S. N., J. Kolasa & K. Cottenie, 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262.

    Article  PubMed  Google Scholar 

  • Patterson, B. D. & W. Atmar, 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society 28: 65–82.

    Article  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Presley, S. J., L. C. Higgins & M. R. Willig, 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119: 908–917.

    Article  Google Scholar 

  • Preston, F. W., 1948. The commonness, and rarity, of species. Ecology 29: 254–283.

    Article  Google Scholar 

  • R Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ragonha, F. H., G. D. Pinha, C. G. Bilia, R. G. Silva, R. P. Tramonte & A. M. Takeda, 2013. Shoreline development from neotropical floodplain lakes on the density and richness of Chironomidae larvae. Bioikos 27: 67–77.

    Google Scholar 

  • Ricklefs, R. E., 1987. Community diversity: relative roles of local and regional processes. Science 235: 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Roberto, M. C., N. F. E. Santana & S. M. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.

    Article  CAS  Google Scholar 

  • Rosin, G. C., D. P. Oliveira-Mangarotti, A. M. Takeda & C. M. M. Butakka, 2009. Consequences of dam construction upstream of the Upper Paraná River floodplain (Brazil): a temporal analysis of the Chironomidae community over an eight-year period. Brazilian Journal of Biology 69: 591–608.

    Article  CAS  Google Scholar 

  • Shmida, A. & M. V. Wilson, 1985. Biological determinants of species diversity. Journal of Biogeography 12: 1–20.

    Article  Google Scholar 

  • Simões, N. R., J. D. Dias, C. M. Leal, L. S. M. Braghin, F. A. Lansac-Tôha & C. C. Bonecker, 2013. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a neotropical floodplain. Aquatic Sciences 75: 607–6117.

    Article  Google Scholar 

  • Siqueira, T., F. O. Roque & S. Trivinho-Strixino, 2008. Species richness, abundance, and body size relationships from a Neotropical chironomid assemblage: Looking for patters. Basic and Applied Ecology 9: 606–612.

    Article  Google Scholar 

  • Siqueira, T., L. M. Bini, M. V. Cianciaruso, F. O. Roque & S. Trivinho-Strixino, 2009. The role of niche measures in explaining the abundance—distribution relationship in tropical lotic chironomids. Hydrobiologia 636: 72–163.

    Article  Google Scholar 

  • Siqueira, T., L. M. Bini, F. O. Roque, S. R. M. Couceiro, S. Trivinho-Strixino & K. Cottenie, 2012. Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography 35: 183–192.

    Article  Google Scholar 

  • Souza Filho, E. E. & J. C. Stevaux, 1997. Geologia e Geomorfologia do complexo rio Baía, Curutuba, Ivinhema. In Vazzoler, A. E. A. M., A. A. Agostinho & N. S. Hahn (eds), A planície de inundação do alto rio Paraná. Eduem, Maringá: 73–102.

    Google Scholar 

  • Souza Filho, E. E., 2009. Evaluation of the Upper Paraná River discharge controlled by reservoirs. Brazilian Journal of Biology 69: 707–716.

    Article  CAS  Google Scholar 

  • Spitale, D., 2012. A comparative study of common and rare species in spring habitats. Ecoscience 19: 80–88.

    Article  Google Scholar 

  • Statsoft, Inc. Statistica (data analysis software system), version 7.1, 2005, www.statsoft.com.

  • Teixeira, C., J. G. Tundisi & M. B. Kutner, 1965. Plankton studies in a mangrove: The standing- stock and some ecological factors. Boletim do Instituto Oceanografico 24: 23–41.

    Google Scholar 

  • Thomaz, S. M., T. A. Pagioro, L. M. Bini, M. C. Roberto & R. R. A. Rocha, 2004. Limnological characterization of the aquatic environments and the influence of hydrometric levels. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn, N. S. (eds), The upper Paraná River and its floodplain, physical aspects, ecology and conservation. Backhuys Publishers, Leiden: 75–102.

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Trivinho-Strixino, S., 2011. Larvas de Chironomidae. Guia de Identificação - São Carlos, Depto Hidrobiologia/Lab. Entomologia Aquática/UFSCar.

  • Trivinho-Strixino, S. & G. Strixino, 1995. Larvas de Chironomidae (Diptera) do Estado de São Paulo. Guia de Identificação e Diagnose dos gêneros. São Carlos/SP: UFSCar.

  • Ulrich, W., M. Almeida-Neto & N. J. Gotelli, 2009. A consumer’s guide to nestedness analysis. Oikos 118: 3–17.

    Article  Google Scholar 

  • Villalobos, F., R. Dobrovolski, D. B. Provete & S. F. Gouveia, 2013. Is rich and rare the common share? Describing biodiversity patterns to inform conservation practices for South American Anurans. Plos One 8: 1–6.

    Article  Google Scholar 

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal Geology 30: 377–392.

    Article  Google Scholar 

  • White, P. S. & S. T. A. Pickett, 1985. Natural disturbance and patch dynamics: an introduction. In Pickett, S. T. A. & P. S. White (eds), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, Salt Lake: 3–13.

    Google Scholar 

  • Wilson, D. S., 1992. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73: 1984–2000.

    Article  Google Scholar 

  • Wright, D. H., B. D. Patterson, G. M. Mikkelson, A. Cutler & W. Atmar, 1998. A comparative analysis of nested subset patterns of species composition. Oecologia 113: 1–20.

    Article  Google Scholar 

  • Würdig, N. L., C. S. S. Cenzano & D. Motta-Marques, 2007. Macroinvertebrate communities structure in different environments of the Taim Hydrological System in the state of Rio Grande do Sul, Brazil. Acta Limnologica Brasiliensis 19: 427–438.

    Google Scholar 

Download references

Acknowledgments

We thank to S. M. Thomaz, C. C. Bonecker and 2 anonymous referees for suggestions that improved our manuscript. We would like to thank the Long Term Ecological Research (LTER/CNPq) program for the opportunity to develop this study, the Center of Research in Limnology, Ichthyology, and Aquaculture of State University of Maringá (Nupelia/UEM) for logistical support and CAPES and CNPq for post-graduate and post-doctoral scholarships. We would like to thank the Limnology Basic Laboratory/Nupelia for abiotic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Katharine Petsch.

Additional information

Handling editor: Sonja Stendera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 129 kb)

Supplementary material 2 (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petsch, D.K., Pinha, G.D., Dias, J.D. et al. Temporal nestedness in Chironomidae and the importance of environmental and spatial factors in species rarity. Hydrobiologia 745, 181–193 (2015). https://doi.org/10.1007/s10750-014-2105-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2105-0

Keywords

Navigation