Advertisement

Hydrobiologia

, Volume 745, Issue 1, pp 181–193 | Cite as

Temporal nestedness in Chironomidae and the importance of environmental and spatial factors in species rarity

  • Danielle Katharine Petsch
  • Gisele Daiane Pinha
  • Juliana Déo Dias
  • Alice Michiyo Takeda
Primary Research Paper

Abstract

Biological communities are composed of a few common and many rare species. An understanding of the mechanisms that govern the distribution of these species is fundamental to knowledge regarding community ecology. Our hypothesis is that chironomid larvae follow a nested distribution in relation to hydrological periods in Neotropical floodplain lakes, whereby the flood period composition is a subset of the drought periods with a predominance of common species. We collected samples from 18 lakes in 2011 in a flood month and three drought months. The community followed a nested distribution where the spatial factors were more important for rare and common species during the flood and for the common species during all months. Thus, with the increasing connectivity and similarity of environments during the flood, neutral processes, as the dispersal, would govern the community. Conversely, environmental factors were more important for rare species in the drought, which suggest that these species are more specialists, largely influenced by niche-related processes. Thus, our study emphasizes the complexity of biological communities specifically concerning how environmental, spatial, and temporal factors influence community dynamics among species groups.

Keywords

Metacommunity Diversity Specialists Common species Floodplain 

Notes

Acknowledgments

We thank to S. M. Thomaz, C. C. Bonecker and 2 anonymous referees for suggestions that improved our manuscript. We would like to thank the Long Term Ecological Research (LTER/CNPq) program for the opportunity to develop this study, the Center of Research in Limnology, Ichthyology, and Aquaculture of State University of Maringá (Nupelia/UEM) for logistical support and CAPES and CNPq for post-graduate and post-doctoral scholarships. We would like to thank the Limnology Basic Laboratory/Nupelia for abiotic data.

Supplementary material

10750_2014_2105_MOESM1_ESM.pdf (130 kb)
Supplementary material 1 (PDF 129 kb)
10750_2014_2105_MOESM2_ESM.pdf (134 kb)
Supplementary material 2 (PDF 134 kb)

References

  1. Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology & Hydrobiology 4: 267–289.Google Scholar
  2. Algarte, V. M., L. Rodrigues, L. V. Landeiro, T. Siqueira & L. M. Bini, 2014. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722: 279–290.CrossRefGoogle Scholar
  3. Almeida-Neto, M., P. R. J. Guimarães & T. M. A. Lewinsohn, 2008. Consistent metric for nestedness analysis in ecological systems: reconciling concept and quantification. Oikos 117: 1227–1239.CrossRefGoogle Scholar
  4. Anderson, A. M. & L. C. Ferrington Jr., 2013. Resistance and resilience of winter-emerging Chironomidae (Diptera) to a flood event: implications for Minnesota trout streams. Hydrobiologia 707: 59–71.CrossRefGoogle Scholar
  5. Anjos, A. F., A. M. Takeda & G. D. Pinha, 2011. Distribuição espacial e temporal das larvas de Chironomidae em diferentes ambientes do complexo - rio Baía - Mato Grosso do Sul - Brasil. Acta Scientiarum Biological Sciences 33: 417–426.CrossRefGoogle Scholar
  6. Azeria, T. E. & J. Kolasa, 2008. Nestedness, niche metrics and temporal dynamics of a metacommunity in a dynamic natural model system. Oikos 117: 1006–1019.CrossRefGoogle Scholar
  7. Blackburn, T. M., P. Cassey & K. J. Gaston, 2006. Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. Journal of Animal Ecology 75: 1426–1439.PubMedCrossRefGoogle Scholar
  8. Bloch, C. P., C. L. Higgins & M. R. Willig, 2007. Effects of large-scale disturbance on metacommunity structure of terrestrial gastropods: temporal trends in nestedness. Oikos 116: 395–406.CrossRefGoogle Scholar
  9. Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.CrossRefGoogle Scholar
  10. Brown, J. H., 1984. On the relationship between abundance and distribution of species. American Naturalist 124: 255–279.CrossRefGoogle Scholar
  11. Carmouze, J. P., 1994. O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. São Paulo: Edgard Blüncher.Google Scholar
  12. Chase, J. M. & M. A. Leibold, 2003. Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago.CrossRefGoogle Scholar
  13. Epler, J. H., 2001. Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina. Special Publication, Crawfordwille.Google Scholar
  14. Ferrington, L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 445–447.Google Scholar
  15. Finn, D. S. & L. Poff, 2011. Examining spatial concordance of genetic and species diversity patterns to evaluate the role of dispersal limitation in structuring headwater metacommunities. Journal of North American Benthological Society 30: 273–283.CrossRefGoogle Scholar
  16. Funk, A., F. Schiemer & W. Reckendorfer, 2013. Metacommunity structure of aquatic gastropods in a river floodplain: the role of niche breadth and drift propensity. Freshwater Biology 58: 2505–2516.CrossRefGoogle Scholar
  17. Gaston, K. J., 1994. Rarity. Chapman and Hall, London.CrossRefGoogle Scholar
  18. Gaston, K. J., 2011. Common ecology. BioScience 61: 354–362.CrossRefGoogle Scholar
  19. Gilpin, M. E. & I. A. Hanski, 1991. Metapopulation Dynamics: Empirical and Theorical Investigations. Academic Press, London.Google Scholar
  20. Golterman, H. L., R. S. Clymo & M. A. M. Ohstad, 1978. Methods for Physical and Chemical Analysis of Freshwater. Blackwell, Oxford.Google Scholar
  21. Guimarães, P. R. J., V. Rico-Gray, S. R. Reis & J. N. Thompson, 2006. Asymmetries in specialization in ant–plant mutualistic networks. Proceedings of the Royal Society of London 273: 2041–2047.CrossRefGoogle Scholar
  22. Heino, J., 2005. Metacommunity patters of highly diverse stream midges: gradients, chequerboards, and nestedness, or is there only randomness? Ecology Entomology 30: 590–599.CrossRefGoogle Scholar
  23. Heino, J., H. Myrkra & T. Muotka, 2009. Temporal variability of nestedness and idiosyncratic species in stream insect Kassemblages. Diversity and Distributions 15: 198–206.CrossRefGoogle Scholar
  24. Henriques-Silva, R., Z. Lindo & P. R. Peres-Neto, 2013. A community of metacommunities: exploring patterns in species distributions across large geografical areas. Ecology 94: 627–639.PubMedCrossRefGoogle Scholar
  25. Higuti, J. & A. M. Takeda, 2002. Spatial and temporal variation in of Chironomid larval (Diptera) in two lagoons and two tributaries of the Upper Paraná River floodplain, Brazil. Brazilian Journal of Biology 62: 807–818.CrossRefGoogle Scholar
  26. Hubbell, S. P., 2001. A Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.Google Scholar
  27. Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.CrossRefGoogle Scholar
  28. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Science 106: 110–127.Google Scholar
  29. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  30. Legendre, P. & L. Legendre, 1998. Numerical ecology. Elsevier, Amsterdam.Google Scholar
  31. Leibold, M. A. & M. A. McPeek, 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87: 1399–1410.PubMedCrossRefGoogle Scholar
  32. Leibold, M. A. & G. M. Mikkelson, 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97: 237–250.CrossRefGoogle Scholar
  33. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase & M. F. Hoopes, 2004. The metacommunity concept: a framework for multiscale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  34. Mackereth, F. Y. H., J. G. Heron & J. J. Talling, 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association Scientific Publication 36: 1–120.Google Scholar
  35. Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Science, New York.Google Scholar
  36. Marquet, A. P., M. Fernández, S. A. Navarreta & C. Valdovinos, 2004. Diversity emerging: toward a deconstruction of biodiversity patterns. In Lomollino, M. & L. Haeney (eds), Frontiers of Biogeography: New Directions in the Geography of Nature. Sinauer Associates, Massachusetts: 191–210.Google Scholar
  37. Moore, J. E. & R. K. Swihart, 2007. Toward ecologically explicit null models of nestedness. Oecologia 152: 763–777.PubMedCrossRefGoogle Scholar
  38. Nabout, J. C., T. Siqueira, L. M. Bini & I. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35: 720–726.CrossRefGoogle Scholar
  39. Norton, J., J. W. Lewis & D. Rollinson, 2004. Temporal and spatial patterns of nestedness in eel macroparasite communities. Parasitology 129: 203–211.PubMedCrossRefGoogle Scholar
  40. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2010. Vegan: Community Ecology Package. R package version 1.17–3.Google Scholar
  41. Pandit, S. N., J. Kolasa & K. Cottenie, 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262.PubMedCrossRefGoogle Scholar
  42. Patterson, B. D. & W. Atmar, 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society 28: 65–82.CrossRefGoogle Scholar
  43. Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.PubMedCrossRefGoogle Scholar
  44. Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.CrossRefGoogle Scholar
  45. Presley, S. J., L. C. Higgins & M. R. Willig, 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119: 908–917.CrossRefGoogle Scholar
  46. Preston, F. W., 1948. The commonness, and rarity, of species. Ecology 29: 254–283.CrossRefGoogle Scholar
  47. R Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  48. Ragonha, F. H., G. D. Pinha, C. G. Bilia, R. G. Silva, R. P. Tramonte & A. M. Takeda, 2013. Shoreline development from neotropical floodplain lakes on the density and richness of Chironomidae larvae. Bioikos 27: 67–77.Google Scholar
  49. Ricklefs, R. E., 1987. Community diversity: relative roles of local and regional processes. Science 235: 167–171.PubMedCrossRefGoogle Scholar
  50. Roberto, M. C., N. F. E. Santana & S. M. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.CrossRefGoogle Scholar
  51. Rosin, G. C., D. P. Oliveira-Mangarotti, A. M. Takeda & C. M. M. Butakka, 2009. Consequences of dam construction upstream of the Upper Paraná River floodplain (Brazil): a temporal analysis of the Chironomidae community over an eight-year period. Brazilian Journal of Biology 69: 591–608.CrossRefGoogle Scholar
  52. Shmida, A. & M. V. Wilson, 1985. Biological determinants of species diversity. Journal of Biogeography 12: 1–20.CrossRefGoogle Scholar
  53. Simões, N. R., J. D. Dias, C. M. Leal, L. S. M. Braghin, F. A. Lansac-Tôha & C. C. Bonecker, 2013. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a neotropical floodplain. Aquatic Sciences 75: 607–6117.CrossRefGoogle Scholar
  54. Siqueira, T., F. O. Roque & S. Trivinho-Strixino, 2008. Species richness, abundance, and body size relationships from a Neotropical chironomid assemblage: Looking for patters. Basic and Applied Ecology 9: 606–612.CrossRefGoogle Scholar
  55. Siqueira, T., L. M. Bini, M. V. Cianciaruso, F. O. Roque & S. Trivinho-Strixino, 2009. The role of niche measures in explaining the abundance—distribution relationship in tropical lotic chironomids. Hydrobiologia 636: 72–163.CrossRefGoogle Scholar
  56. Siqueira, T., L. M. Bini, F. O. Roque, S. R. M. Couceiro, S. Trivinho-Strixino & K. Cottenie, 2012. Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography 35: 183–192.CrossRefGoogle Scholar
  57. Souza Filho, E. E. & J. C. Stevaux, 1997. Geologia e Geomorfologia do complexo rio Baía, Curutuba, Ivinhema. In Vazzoler, A. E. A. M., A. A. Agostinho & N. S. Hahn (eds), A planície de inundação do alto rio Paraná. Eduem, Maringá: 73–102.Google Scholar
  58. Souza Filho, E. E., 2009. Evaluation of the Upper Paraná River discharge controlled by reservoirs. Brazilian Journal of Biology 69: 707–716.CrossRefGoogle Scholar
  59. Spitale, D., 2012. A comparative study of common and rare species in spring habitats. Ecoscience 19: 80–88.CrossRefGoogle Scholar
  60. Statsoft, Inc. Statistica (data analysis software system), version 7.1, 2005, www.statsoft.com.
  61. Teixeira, C., J. G. Tundisi & M. B. Kutner, 1965. Plankton studies in a mangrove: The standing- stock and some ecological factors. Boletim do Instituto Oceanografico 24: 23–41.Google Scholar
  62. Thomaz, S. M., T. A. Pagioro, L. M. Bini, M. C. Roberto & R. R. A. Rocha, 2004. Limnological characterization of the aquatic environments and the influence of hydrometric levels. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn, N. S. (eds), The upper Paraná River and its floodplain, physical aspects, ecology and conservation. Backhuys Publishers, Leiden: 75–102.Google Scholar
  63. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.CrossRefGoogle Scholar
  64. Trivinho-Strixino, S., 2011. Larvas de Chironomidae. Guia de Identificação - São Carlos, Depto Hidrobiologia/Lab. Entomologia Aquática/UFSCar.Google Scholar
  65. Trivinho-Strixino, S. & G. Strixino, 1995. Larvas de Chironomidae (Diptera) do Estado de São Paulo. Guia de Identificação e Diagnose dos gêneros. São Carlos/SP: UFSCar.Google Scholar
  66. Ulrich, W., M. Almeida-Neto & N. J. Gotelli, 2009. A consumer’s guide to nestedness analysis. Oikos 118: 3–17.CrossRefGoogle Scholar
  67. Villalobos, F., R. Dobrovolski, D. B. Provete & S. F. Gouveia, 2013. Is rich and rare the common share? Describing biodiversity patterns to inform conservation practices for South American Anurans. Plos One 8: 1–6.CrossRefGoogle Scholar
  68. Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal Geology 30: 377–392.CrossRefGoogle Scholar
  69. White, P. S. & S. T. A. Pickett, 1985. Natural disturbance and patch dynamics: an introduction. In Pickett, S. T. A. & P. S. White (eds), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, Salt Lake: 3–13.Google Scholar
  70. Wilson, D. S., 1992. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73: 1984–2000.CrossRefGoogle Scholar
  71. Wright, D. H., B. D. Patterson, G. M. Mikkelson, A. Cutler & W. Atmar, 1998. A comparative analysis of nested subset patterns of species composition. Oecologia 113: 1–20.CrossRefGoogle Scholar
  72. Würdig, N. L., C. S. S. Cenzano & D. Motta-Marques, 2007. Macroinvertebrate communities structure in different environments of the Taim Hydrological System in the state of Rio Grande do Sul, Brazil. Acta Limnologica Brasiliensis 19: 427–438.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Danielle Katharine Petsch
    • 1
  • Gisele Daiane Pinha
    • 1
  • Juliana Déo Dias
    • 1
  • Alice Michiyo Takeda
    • 1
  1. 1.Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Programa de Pós Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA)Universidade Estadual de MaringáMaringáBrazil

Personalised recommendations