Skip to main content
Log in

Swimming and hiding regardless of the habitat: prey fish do not choose between a native and a non-native macrophyte species as a refuge

  • INVASIVE SPECIES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The ability to respond to a predation threat may be the key factor influencing prey survival. Thus, small-sized fish may adapt to use macrophyte patches as refugia in ecosystems where they face predators. We evaluated the habitat choices of a small fish species (Serrapinnus notomelas) to determine whether these fish prefer native versus recently introduced submerged macrophyte stands in the context of predator avoidance. Specifically, we applied three predator cue treatments: no cue, chemical cue from a hungry predator and presence of a satiated predator. First, we empirically tested the theoretical assumption that the prey fish use vegetated habitats and that the presence of an actual predator has a stronger effect on the choice of habitat than simply a chemical cue. Then we tested the hypothesis that prey do not choose a habitat according to macrophyte species and whether this pattern changed as a result of increasing predation risk. We found that the prey fish preferred vegetated habitats; however, they did not appear to distinguish native from invasive macrophytes. Our results support the hypothesis that the physical structure of macrophytes is more important in determining habitat choice than the evolutionary relationship between the fish and the native macrophyte species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abjornsson, K., B. Wagner & A. Axelsson, 1997. Responses to Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111: 166–171.

    Article  Google Scholar 

  • Agostinho, A. A., H. F. Julio-Junior, L. C. Gomes & L. M. Bini, 1997. Composição, abundância e distribuição espaço-temporal da ictiofauna. In Vazzoler, A. E. A. M., A. A. Agostinho & N. S. Hahn (eds), A Planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômico. EDUEM, Maringá PR: 177–205.

    Google Scholar 

  • Appelberg, M., B. Soderback & T. Odelstronl, 1993. Predator detection and perception of predation risk in the crayfish Astacus astacus L. Nordic Journal of Freshwater Research 68: 55–62.

    Google Scholar 

  • Bell, R., A. L. Rypstra & M. H. Persons, 2006. The effect of predator hunger on chemically-mediated antipredator responses and survival in the wolf spider Pardosa milvina. Ethology 112: 903–910.

    Article  Google Scholar 

  • Brown, G. E. & G. Magnavacca, 2003. Predator inspection behaviour in a characin fish: an interaction between chemical and visual information? Ethology 109: 739–750.

    Article  Google Scholar 

  • Carlsson, N. O. L. & D. L. Strayer, 2009. Intraspecific variation in the consumption of exotic prey—a mechanism that increases biotic resistance against invasive species? Freshwater Biology 54: 2315–2319.

    Article  Google Scholar 

  • Carlsson, N. O. L., O. Sarnelle & D. L. Strayer, 2009. Native predators and exotic prey—an acquired taste? Frontiers in Ecology and the Environment 7: 525–532.

    Article  Google Scholar 

  • Cunha, E. R., S. M. Thomaz, H. B. A. Evangelista, C. Carniato, C. F. Souza & R. Fugi, 2011. Small-sized fish assemblages do not differ between a native and a recently established non-indigenous macrophyte in a Neotropical ecosystem. Natureza & Conservação 9: 61–66.

    Article  Google Scholar 

  • Dupuch, A., P. Magnan, A. Bertolo, L. M. Dill & M. Proulx, 2009. Does predation risk influence habitat use by northern redbelly dace Phoxinus eos at different spatial scales? Journal of Fish Biology 74: 1371–1382.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari, M. C. O., F. Messier & D. P. Chivers, 2008. Degradation of chemical alarm cues in the natural conditions: risk assessment by larval woodfrogs. Chemoecology 17: 263–266.

    Article  Google Scholar 

  • Figueiredo, B. R. S., R. P. Mormul & E. Benedito, 2013. Non-additive effects of macrophyte cover and turbidity on predator-prey interactions involving an invertivorous fish and different prey types. Hydrobiologia 716: 21–28.

    Article  CAS  Google Scholar 

  • Figueiredo, B. R. S., R. P. Mormul & E. Benedito, 2014. Structural complexity and turbidity do not interact to influence predation rate and prey selectivity by a small visually feeding fish. Marine and Freshwater Research. doi:10.1071/MF14030.

  • Gonzalo, A., C. Cabido, P. López & J. Martín, 2012. Conspecific alarm cues, but not predator cues alone, determine antipredator behavior of larval southern marbled newts, Triturus pygmaeus. Acta Ethologica 15: 211–216.

    Article  Google Scholar 

  • Goodman, B. A., 2009. Nowhere to run: the role of habitat openness and refuge use in defining patterns of morphological and performance evolution in tropical lizards. Journal of Evolutionary Biology 22: 1535–1544.

    Article  PubMed  Google Scholar 

  • Helfman, G. S., 1989. Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behavioral Ecology and Sociobiology 24: 47–58.

    Article  Google Scholar 

  • Holmes, T. H. & M. I. McCormick, 2011. Response across a gradient: behavioural reactions of newly settled fish to predation cues. Animal Behaviour 81: 543–550.

    Article  Google Scholar 

  • Hossie, T. J. & D. L. Murray, 2010. You can’t run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. Oecologia 163: 395–404.

    Article  PubMed  Google Scholar 

  • Kovalenko, K. E., A. A. Agostinho, E. D. Dibble & F. M. Pelicice, 2010a. Recognition of non-native peacock bass, Cichla kelberi by native prey: testing the naiveté hypothesis. Biological Invasions 12: 3071–3080.

    Article  Google Scholar 

  • Kovalenko, K. E., E. D. Dibble, A. A. Agostinho, G. Catanhede & R. Fugi, 2010b. Direct and indirect effects of an introduced piscivore, Cichla kelberi and their modification by aquatic plants. Hydrobiologia 638: 245–253.

    Article  Google Scholar 

  • Lautala, T. & H. Hirvonen, 2008. Antipredator behavior of naïve Arctic charr young in the presence of predator odours and conspecific alarm cues. Ecology of Freshwater Fish 17: 78–85.

    Article  Google Scholar 

  • Luz-Agostinho, K. D. G., A. A. Agostinho, L. C. Gomes, H. F. Júlio-Jr. & R. Fugi, 2009. Effects of flooding regime on the feeding activity and body condition of piscivorous fish in the Upper Paraná River floodplain. Brazilian Journal of Biology 69: 481–490.

    Article  CAS  Google Scholar 

  • Orrock, J. L., E. L. Preisser, J. H. Grabowski & G. C. Trussell, 2013. The cost of safety: refuges increase the impact of predation risk in aquatic systems. Ecology 94: 573–579.

    Article  PubMed  Google Scholar 

  • Pappal, A. L., R. A. Rountree & D. G. MacDonald, 2012. Relationship between body size and habitat complexity preference in age −0 and −1 year winter flounder Pseudopleuronectes americanus. Journal of Fish Biology 81: 220–229.

    Article  CAS  PubMed  Google Scholar 

  • Pelicice, F. M. & A. A. Agostinho, 2009. Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a neotropical reservoir. Biological Invasions 11: 1789–1801.

    Article  Google Scholar 

  • Savino, J. F. & R. A. Stein, 1989. Behavior of fish predators and their prey: habitat choice between open water and dense vegetation. Environmental Biology of Fishes 24: 287–293.

    Article  Google Scholar 

  • Sousa, W. T. Z., 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem. Hydrobiologia 669: 1–20.

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for comments made on our first draft. BRS Figueiredo is grateful to the Coordination for the Improvement of Higher Level Personnel (CAPES) for a scholarship. RP Mormul and SM Thomaz thank the National Council for Scientific and Technological Development (CNPq) for providing a post-doctoral research fellowship and a research productivity grant, respectively. Finally, we thank JVB Fasoli for help in the field and ER Cunha for providing valuable discussions. This work was partially supported by CAPES, an organ of the Brazilian Government for the training of human resources. The experiment was carried out in accordance with the “Ethical Principles in Animal Research” adopted by the Brazilian College of Animal Experimentation (COBEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno R. S. Figueiredo.

Additional information

Guest editors: Sidinei M. Thomaz, Katya E. Kovalenko, John E. Havel & Lee B. Kats / Aquatic Invasive Species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, B.R.S., Mormul, R.P. & Thomaz, S.M. Swimming and hiding regardless of the habitat: prey fish do not choose between a native and a non-native macrophyte species as a refuge. Hydrobiologia 746, 285–290 (2015). https://doi.org/10.1007/s10750-014-2096-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2096-x

Keywords

Navigation