, Volume 746, Issue 1, pp 223–231 | Cite as

Eating the competitor: a mechanism of invasion

  • Larissa Strictar Pereira
  • Angelo Antonio Agostinho
  • Luiz Carlos Gomes


The success of predators in species invasion will depend on their interactions with their own predators and competitors. The present study examined whether the predation of piscivorous fish among other piscivorous fish could be an active mechanism in species invasion. The diet of eleven piscivorous fish found in the upper Paraná River basin was analyzed during eight years. Seven of the fish species were native to the river basin, and four were invasive species. The diet composition of the studied species did not differ from each other, and a high value of niche overlap was found among invasive species with native species. Invasive species consumed higher amounts of piscivorous species, mainly Hoplias sp. 1 and C. kelberi. Salminus brasiliensis was the only native species with high values of predation over piscivorous fish. There were no significant differences between the consumption of piscivorous fish and their abundance. Overall, the consumption of piscivorous fish by invasive species can act as a mechanism for their success and maintenance in a new environment. Piscivorous invaders radically change the composition of their new environment more than other trophic levels; therefore, we recommend special care with the introduction of piscivores.


Piscivory Emergent multipredator effects Intra guild predation 



We thank João Carlos Barbosa da Silva for contributions and support in the manuscript, Luiz Fernando Caserta Tencatt for the fish identification and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial support. AAA and LCG are researchers from CNPq (Bolsa Produtividade).


  1. Agostinho, A. A., E. E. Marques, C. S. Agostinho, D. A. de Almeida, R. J. Oliveira, J. Rodrigues & B. Melo, 2007. Fish ladder of Lajeado Dam: migrations on one-way routes? Neotropical Ichthyology 5: 121–130.CrossRefGoogle Scholar
  2. Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.CrossRefGoogle Scholar
  3. Agostinho, A. A., F. M. Pelicice, L. C. Gomes & H. F. Júlio-Júnior, 2010. Reservoir fish stocking: when one plus one may be less than two. Natureza & Conservação 08: 103–111.CrossRefGoogle Scholar
  4. Anderson, M. J., 2004. PERMDISP: a FORTRAN computer program for permutational analysis of multivariate dispersions (for any two-factor ANOVA design) using permutation tests. Department of Statistics, University of Auckland, Auckland.Google Scholar
  5. Anderson, M. J., 2006. Distance based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253.PubMedCrossRefGoogle Scholar
  6. Bajer, P. G., C. J. Chizinski, J. J. Silbernagel & P. W. Sorensen, 2012. Variation in native micro-predator abundance explains recruitment of a mobile invasive fish, the common carp in a naturally unstable environment. Biological Invasions 14: 1919–1929.CrossRefGoogle Scholar
  7. Baxter, C. V., K. D. Faush, M. Murakami & P. L. Chapman, 2004. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85: 2656–2663.CrossRefGoogle Scholar
  8. Diamond, J. & T. J. Case, 1986. Overview: introductions, extinctions, exterminations and invasions. In Diamond, J. & T. J. Case (eds), Community Ecology. Harper & Row, San Francisco: 65–79.Google Scholar
  9. Dick, J. T. A., 1996. Post-invasion amphipod communities of Lough Neagh, Northern Ireland: influences of habitat selection and mutual predation. Journal of Animal Ecology 65: 756–767.CrossRefGoogle Scholar
  10. Fugi, R., K. D. G. Luz-Agostinho & A. A. Agostinho, 2008. Trophic interaction between an introduced (peacock bass) and a native (dogfish) piscivorous fish in a Neotropical impounded river. Hydrobiologia 607(143): 150.Google Scholar
  11. Graça, W. J. & C. S. Pavanelli, 2007. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. Maringá, Eduem.Google Scholar
  12. Griffen, B. D. & J. E. Byers, 2006. Partitioning mechanisms of predator interference in different habitats. Oecologia 146: 608–614.PubMedCrossRefGoogle Scholar
  13. Hahn, L., A. A. Agostinho, K. K. English, J. Carosfeld, L. F. Câmara & S. J. Cooke, 2011. Use of radiotelemetry to track threatened dorados Salminus brasiliensis in the upper Uruguay River, Brazil. Endangered Species Research 15: 103–114.CrossRefGoogle Scholar
  14. Hall, R. J., 2011. Eating the competition speeds up invasions. Biology Letters 7: 307–311.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Havel, J. E., C. E. Lee & M. J. Vander Zanden, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.CrossRefGoogle Scholar
  16. Hochberg, M. E., 1996. Consequences for host population levels of increasing natural enemy species richness in classical biological control. American Naturalist 147: 307–318.CrossRefGoogle Scholar
  17. Holway, D. A. & A. V. Suarez, 1999. Animal behavior: an essential component of invasion biology. Trends in Ecology and Evolution 14: 328–330.PubMedCrossRefGoogle Scholar
  18. Hurd, L. E. & R. M. Eisenberg, 1990. Arthropod community responses to manipulation of a bitrophic predator guild. Ecology 71: 2107–2114.CrossRefGoogle Scholar
  19. Hynes, H. B. N., 1950. The food of freshwater sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius) with a review of methods used in studies of the food of fishes. Journal of Animal Ecology 19: 36–58.CrossRefGoogle Scholar
  20. Hyslop, E. J., 1980. Stomach contents analysis, a review of methods and their application. Journal of Fish Biology 17: 411–429.CrossRefGoogle Scholar
  21. Johnson, P. T. J., J. D. Olden & M. J. Vander Zanden, 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment 6: 357–363.CrossRefGoogle Scholar
  22. Júlio-Júnior, H. F., C. Dei Tos, A. A. Agostinho & C. S. Pavanelli, 2009. A massive invasion of fish species after eliminating a natural barrier in the upper rio Paraná basin. Neotropical Ichthyology 7: 709–718.CrossRefGoogle Scholar
  23. Langeani, F., O. T. Oyakawa, O. A. Shibatta, C. S. Pavanelli & L. Casatti, 2007. Diversidade da ictiofauna do Alto Rio Paraná : composição atual e perspectivas futuras. Biota Neotropica 7: 181–197.CrossRefGoogle Scholar
  24. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier Science, Amsterdam.Google Scholar
  25. Losey, J. E. & R. F. Denno, 1998. Positive predator-predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79: 2143–2152.Google Scholar
  26. Luiz, T. F., M. R. Velludo, A. C. Peret, J. L. Rodrigues & A. M. Peret, 2011. Diet, reproduction and population structure of the introduced Amazonian fish Cichla piquiti (Perciformes : Cichlidae) in the Cachoeira Dourada reservoir (Paranaíba River, central Brazil). International Journal of Tropical Biology 59: 727–741.Google Scholar
  27. MacNeil, C. & J. Prenter, 2000. Differential microdistributions and interspecific interactions in coexisting native and introduced Gammarus spp. (Crustacea: Amphipoda). Journal of Zoology 251: 377–384.CrossRefGoogle Scholar
  28. Moyle, P. B. & T. Light, 1996. Biological invasions of fresh water: empirical rules and assembly theory. Biological Conservation 78: 149–161.CrossRefGoogle Scholar
  29. Okubo, A., P. K. Maini, M. H. Williamson & J. D. Murray, 1989. On the spatial spread of the grey squirrel in Britain. Proceedings of the Royal Society B: Biological Sciences 238: 113–125.CrossRefGoogle Scholar
  30. Oliveira, E. F., E. Goulart, L. Breda, C. V. Minte-Vera, L. Ricardo, D. S. Paiva & M. R. Vismara, 2010. Ecomorphological patterns of the fish assemblage in a tropical floodplain : effects of trophic, spatial and phylogenetic structures. Neotropical Ichthyology 8: 569–586.Google Scholar
  31. Orsi, M. L. & J. R. Britton, 2014. Long-term changes in the fish assemblage of a neotropical hydroelectric reservoir. Journal of Fish Biology 44: 1–7.Google Scholar
  32. Pazza, R. & H. F. Júlio-Jr, 2003. Occurrence of three sympatric cytotypes of Hoplias malabaricus (Pisces, Erythrinidae) in the upper Paraná river floodplain (Brazil). Cytologia 68: 159–163.CrossRefGoogle Scholar
  33. Pelicice, F. M. & A. A. Agostinho, 2009. Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biological Invavasions 11: 1789–1801.CrossRefGoogle Scholar
  34. Pelicice, F. M., J. R. S. Vitule, D. P. Lima Junior, M. L. Orsi & A. A. Agostinho, 2014. A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conservation Letters 7: 55–60.CrossRefGoogle Scholar
  35. Petrere-Jr, M., A. A. Agostinho, E. Okada & H. F. Júlio-Junior, 2002. Review of the fisheries in the Brazilian portion of Paraná River. In Cowx, I. G. (ed.), Management and Ecology os Lake and Reservoir Fisheries. Wiley, New York: 123–143.Google Scholar
  36. Pintor, L. M., A. Sih & M. L. Bauer, 2008. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117: 1629–1636.CrossRefGoogle Scholar
  37. Rehage, J. S. & A. Sih, 2004. Dispersal behavior, boldness and the link to invasiveness: A comparison of our Gambusia species. Biological Invasions 6: 379–391.CrossRefGoogle Scholar
  38. Rice, E. S. & J. Silverman, 2013. Propagule pressure and climate contribute to the displacement of Linepithema humile by Pachycondyla chinensis. PloS One 8: 1–11.Google Scholar
  39. Santos, A. F. G. N., E. García-Berthou, C. Hayashi & L. N. Santos, 2013. When habitat complexity increases predation risk : experiments with invasive and neotropical native fishes. Marine and Freshwater Research 64: 752–760.CrossRefGoogle Scholar
  40. Schoener, T. W., 1970. Non-synchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408–418.CrossRefGoogle Scholar
  41. Sharma, S., M. J. V. Zanden, J. J. Magnuson & J. Lyons, 2011. Comparing climate change and species invasions as drivers of coldwater fish population extirpations. PlosOne 6: 1–9.Google Scholar
  42. Shinen, J. S., S. G. Morgan & A. L. Chan, 2009. Invasion resistance on rocky shores: direct and indirect effects of three native predators on an exotic and a native prey species. Marine Ecology Progress Series 378: 47–54.CrossRefGoogle Scholar
  43. Sih, A., G. Englund & D. Wooster, 1998. Emergent impacts of multiple predators on prey. Trends in Ecology & Evolution 13: 350–355.CrossRefGoogle Scholar
  44. Sih, A., D. I. Bolnick, B. Luttbeg, J. L. Orrock, S. D. Peacor, L. M. Pintor, E. Preisser, J. S. Rehage & J. R. Vonesh, 2010. Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610–621.CrossRefGoogle Scholar
  45. Svenning, J. C., D. Gravel, R. D. Holt, F. M. Schurr, W. Thuiller, T. Münkemüller, K. H. Schiffers, S. Dullinger, T. C. Edwards, T. Hickler, S. I. Higgins, J. E. M. S. Nabel, J. Pagel & S. Normand, 2014. The influence of interspecific interactions on species range expansion rates. Ecography. doi: 10.1111/j.1600-0587.2013.00574.x.Google Scholar
  46. Thompson, K. A., J. E. Hill & L. G. Nico, 2012. Eastern mosquitofish resists invasion by nonindigenous poeciliids through agonistic behaviors. Biological Invasions 14: 1515–1529.CrossRefGoogle Scholar
  47. Zaret, T. M. & R. T. Paine, 1973. Species introduction in a tropical lake. Science 182: 449–455.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Larissa Strictar Pereira
    • 1
  • Angelo Antonio Agostinho
    • 1
  • Luiz Carlos Gomes
    • 1
  1. 1.DBI, Núcleo de Pesquisas em Limnologia, Ictiologia e AquiculturaUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations